京公网安备 11010802034615号
经营许可证编号:京B2-20210330
matplotlib环形图是饼图衍生出来的统计图形,可以看作是两个以上饼图的叠合。环形图与饼图类似,其实是有差别的。饼图是用圆形及圆内扇形的面积来表示数值大小的图形,主要用于表示总体中各组成部分所占的比例。与之对比,环形图中间留有空白,可以用多个环展示多个样本,既可以表示每个样本中各部分的占比,又可以对多个样本的结构同时进行对比。
文字表达永远没有图片来的直观,从网上随便搜了一个环形图先简单感受下:
上边的环形图只有一个环,实际上可以根据需要绘制多个环嵌套在一起的环形图,并且也可以加上每一段弧形所占的比例,我们先从简单的开始,绘制一个简单的环形图。
先看下数据源长什么样子,依然是绘制饼图时用到的数据:
所谓环形图,其实用到的依然是绘制饼图的函数,只是对其中的参数进行设置后形成环形图,我们先来绘制一个简单的第一小学成绩环形图:
plt.figure(figsize=(8,8)) #新建画布,画布大小为8*8
plt.pie(data2.iloc[0,1:] #截取第一小学的成绩
,radius=1 # 设置半径为1
,labels=['语文','数学','英语'] #设置各个角的标签
,autopct='%.2f%%' #设置精度为小数点后两位
,textprops={'fontsize': 14, 'color': 'k'} #设置标签字体和颜色
,wedgeprops=dict(width=0.4, edgecolor='w')); #设置饼弧宽度和边框颜色
和之前绘制饼图不同的是多设置了三个参数,一个是设置半径,一个是设置字体和颜色(介绍饼图的文章中饼图中字体有点小,颜色是默认的黑色,其实字体大小和颜色都是可以设置的),最后一个是设置弧度宽度和边框颜色,所谓弧度的宽度其实就是环形的宽度。
来看下效果:
像这种简单的环形图,作用和饼图差不多,只能反映一个小学的成绩情况,如果想要查看两个学校对比的情况需要绘制两个图,当然环形图可以解决这个问题,下边我们来看下升级版的环形图!
以绘制两个环形为例:
plt.figure(figsize=(8,8)) #新建画布,画布大小为8*8
plt.pie(data2.iloc[0,1:] #截取第一小学的成绩
,radius=1 # 设置半径为1
,labels=['语文','数学','英语'] #设置各个角的标签
,autopct='%.2f%%' #设置精度为小数点后两位
,textprops={'fontsize': 14, 'color': 'k'} #设置标签字体和颜色
,wedgeprops=dict(width=0.4, edgecolor='w')) #设置饼弧宽度和边框颜色
plt.pie(data2.iloc[1,1:] #截取第二小学的成绩
,radius=0.6 # 设置半径为0.6
,autopct='%.2f%%'#设置精度为小数点后两位
,textprops={'fontsize': 12, 'color': 'w'}#设置标签字体和颜色
,wedgeprops=dict(width=0.4, edgecolor='w'));#设置饼弧宽度和边框颜色
以前的文章提到过,可以在同一块画布上重复绘图,在绘制堆积条形图的时候用到的就是这个知识点,绘制多个环的环形图也是相同的道理。
在同一块画布上绘制两个环,一个大环一个小环,需要注意的是要先绘制大环,后绘制小环,因为后绘制的图会覆盖先绘制的图,所以我们设置第一个环的半径是1,后边绘制的环半径是0.6,来看下效果:
喏,就是这个效果了,这个图还缺少一个标题,相信大家都知道如何添加图形标题了。
当然这个环形图中的两个环挨在一起了,平时我们看到的环形图每个环之间会有一点间隙,能够很明显的看出是两个分离的环,其实这个也不难!仔细观察上边的代码,两个环之间的半径差是0.4,而我们对弧形宽度也设置的是0.4,所以两个环之间一点缝隙都没有,通过对这两个参数的设置就可以控制两个环之间的距离了。
plt.figure(figsize=(8,8))
plt.pie(data2.iloc[0,1:]
,radius=1
,labels=['语文','数学','英语']
,autopct='%.2f%%'
,textprops={'fontsize': 14, 'color': 'k'}
,wedgeprops=dict(width=0.3, edgecolor='w'))
plt.pie(data2.iloc[1,1:]
,radius=0.6
,autopct='%.2f%%'
,textprops={'fontsize': 14, 'color': 'k'}
,wedgeprops=dict(width=0.3, edgecolor='w'))
plt.title("第一小学(外环)和第二小学(内环)成绩图");
两个环形的半径差没有变,依然是0.4,我们把弧形宽度改成了0.3,来看下效果:
这样是不是就变成大家心目中环形图的样子了(我又偷偷的加上标题了)?这是两个学校的成绩环形图,如果想要多画几个环,记得把半径差设置大一点,弧形宽度设置小一点,能够容纳多个环形就可以啦!
你学会了吗?matplotlib是不是很强大的赶脚!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27