京公网安备 11010802034615号
经营许可证编号:京B2-20210330
这篇文章来探索下多类别条形图比如各学校包含语文、数学、英语三科成绩的条形图怎样绘制。在绘图之前,先来复习一下条形图函数中主要参数的含义:
小例子辅助理解:
x = [0.7, 1.5, 2, 3] height = [3, 10, 12, 7] plt.bar(x, height, width=0.3, bottom=[3, 0, 0, 1] ) plt.show()
参照代码和图形再理解下各个参数的作用。ok,万事俱备,开始绘图!
先看一下原数据data1长什么样子再敲代码:
plt.figure(figsize=(16,6)) x_s = np.array(list(range(0,20,2))) #设置语文成绩的条形所在位置 plt.bar(x_s,data1.loc[:,"语文"].iloc[:10],width=0.5) #绘制语文成绩的条形图 x_y = np.array(list(range(0,20,2)))+0.5 #设置数学成绩的条形所在位置 plt.bar(x_y,data1.loc[:,"数学"].iloc[:10],width=0.5) #绘制数学成绩的条形图 x_y = np.array(list(range(0,20,2)))+1 #设置英语成绩的条形所在位置 plt.bar(x_y,data1.loc[:,"英语"].iloc[:10],width=0.5) #绘制英语成绩的条形图 plt.title("成绩条形图",fontsize = 14) plt.ylabel("成绩",fontsize = 14) plt.xticks(x_s+0.5,data1.iloc[:,0].iloc[:10],fontsize = 12) #x轴刻度为各学校名称,为了刻度正好在三个条形的正中间,设置(x_s+0.5) plt.legend(["语文","数学","英语"]);
坐标轴和rc参数设置的讲解中有提到过,在同一块画布上是可以重复绘图的,其实在一幅条形图中绘制多个类别的条形图应用的就是这个原理。需要注意的是不要让后边绘制的图形覆盖前边绘制的图形,所以需要提前计算好每个条形应该画在哪个地方。
通过代码可以看到都进行了哪些设置,每个条形的宽度都是0.5,所以在绘制好第一个学科的条形图后,排在第二个位置进行绘制的条形图所有的条所在x轴的位置都在第一个学科条形位置的基础上增加了0.5,第三个学科的条形又在第二个学科条形位置的基础上再增加0.5的距离,这样,每个学校的三个学科可以挨着展示出来又不会发生条形重叠的情况。
这里需要注意的另一个问题就是每个学校刻度之间要流出足够的位置放置三个条形。每个条形的宽度都是0.5,一共需要1.5个位置,所以在设置刻度的时候,每个刻度之间的间隔(range(0,20,2)),一共10个刻度,对应选取的10所学校,刻度间距为2,超过所需的1.5。
最终的效果图:
图是画出来了,但是画的过程中需要心算一下各种位置,除了各个条形的位置还有刻度的位置,着实有点麻烦,那么有没有其他更简便一点的方法呢?
先来和我们熟悉的matplotlib绘图做对比,用matplotlib绘图时先选择绘图函数,然后把原数据作为参数传入函数中,而dataframe直接绘图的时候,类似调用了dataframe的方法,在通过参数选择进行哪种图形的绘制。
干说没实感,来段代码感受下:
#通过参数设置生成图形的类型 data2.iloc[:10].plot(x = '学校',y = ['语文','数学','英语'],kind = "bar" ,figsize=(16,6),width=0.7,rot = 0,title = "各学科成绩条形图");
一行代码搞定,先来看下效果图:
是不是看起来和上边matplotlib绘制的图差不多,代码却简洁了很多。先看下原dataframe长什么样子:
接着具体研究下都是哪些参数在影响绘图:
这里写出两种方法实现相同的操作,在实际的工作中,按照需求自行选择即可。
有时候,除了查看单个类别的情况,还需要同时查看总体的情况,这就是堆积条形图擅长的领域了。绘制堆积条形图和绘制普通条形图用的都是plt.bar()函数,也是通过参数设置实现堆积条形图的绘制。
还是对参数设置不太熟的孩子可以回到文章开头回忆下重要参数的作用,这里实现用语文、数学、英语三科成绩的堆积条形图:
plt.figure(figsize=(16,6))
plt.bar(range(21),data1.loc[:,"语文"],width=0.9,label = "语文")
plt.bar(range(21),data1.loc[:,"数学"],bottom=np.array(data1.loc[:,"语文"]),width=0.9,label ="数学")
plt.bar(range(21),data1.loc[:,"英语"],bottom=np.array(data1.loc[:,"语文"]+data1.loc[:,"数学"])
,width=0.9,label ="英语")
totle_score = np.array(data1.loc[:,"语文"]+data1.loc[:,"数学"]+data1.loc[:,"英语"]).astype("int")
for i in range(21):
plt.text(i-0.25,totle_score[i]+1,totle_score[i]) #为条形图中的每个条添加标签
plt.title("各学校成绩堆积图",fontsize = 14)
plt.ylabel("成绩",fontsize = 14)
plt.xticks(range(21),data1.iloc[:,0],rotation=30,fontsize = 12)#x轴刻度为各学校名称
plt.legend() #显示图例;
原理和前边画三科成绩条形图一样,都是在同一块画布上重复绘图,注意绘图的逻辑即可。这里是先画一个学科成绩的纵向条形图,通过bottom参数控制第二个学科成绩绘图时在y轴方向的起始值,也就是在第一科学科成绩条形的顶端接着画第二科学科成绩的条,然后在第二科成绩条形的顶端继续画第三个学科成绩的条形,这样形成的就是堆积条形图。
当然还有一些细节需要注意,比如三个学科条形的宽度得设置成一样的尺寸,避免影响美观。
细心的孩子可能已经发现了一点新鲜的设置:多了一个函数plt.text(),这个函数的作用是在条形的顶端添加了该条形的标签,即三科的总成绩。因为要对每个条形增加一个标签,所以运用了循环,将总分作为标签添加到了图形中。
通过plt.text()函数可以在整幅图的任意位置添加需要的文本进去。函数的第一个参数控制文本在x轴方向的位置,第二个参数控制文本在y轴方向的位置,第三个参数为添加的文本信息。
啰里啰唆说了这么多,来看下堆积条形图的效果:
和常见的堆积条形图没什么不一样对吧,其实条形图依然又值得深挖的地方,还有很多有意思的设置可以尝试呢。来个预告,计划在下一篇文章离探索一下发散型条形图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15