京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Nandhini TS
编译 | CDA数据分析师
Data Preparation for Machine learning : Why it’s important and how to do it
编码是成功的业务模型的前提。
建立成功的AI / ML模型有3个方面:算法,数据和计算。
虽然建立准确的算法和计算技能的应用是过程的一部分,但这是什么基础呢?
使用正确的数据奠定基础
从自动驾驶汽车等基于AI的大规模技术革命到构建非常简单的算法,您都需要正确格式的数据。实际上,特斯拉和福特一直在通过行车记录仪,传感器和倒车摄像头收集数据,并对其进行分析以制造出无人驾驶和全自动汽车,以确保安全的道路。
收集数据之后的下一步是准备数据的过程,这将成为本文的重点,并将在后续部分中详细讨论。在深入研究数据准备过程的概念之前,让我们首先了解其含义。作为基于AI创新的大脑的数据科学家,您需要了解数据准备的重要性,以实现模型所需的认知能力。
什么是数据准备?
数据是每个组织的宝贵资源。但是,如果我们不进一步分析该声明,它可能会否定自己。 企业将数据用于各种目的。从广义上讲,它用于制定明智的业务决策,执行成功的销售和营销活动等。但是,这些不能仅用原始数据来实现。
数据只有经过清洗,贴标签,注释和准备后,才能成为宝贵的资源。数据经过适应性测试的各个阶段后,便最终具备进行进一步处理的资格。处理可以采用多种方法-将数据提取到BI工具,CRM数据库,开发用于分析模型的算法,数据管理工具等。
现在,重要的是您从此信息的分析中收集的见解是准确且值得信赖的。实现此输出的基础在于数据的健康状况。此外,无论您是构建自己的模型还是从第三方那里获得模型,都必须确保标记,扩充,干净,结构化的整个过程背后的数据都经过标记,概括,即数据准备。
正如Wikipedia所定义的,数据准备是将原始数据(可能来自不同的数据源)操纵(或预处理)为可以方便,准确地进行分析的形式的行为,例如出于商业目的。数据准备是数据分析项目的第一步,可以包括许多离散任务,例如加载数据或数据摄取,数据融合,数据清理,数据扩充和数据交付。
机器学习数据准备的重要性
根据Cognilytica的最新研究,其中记录并分析了组织,机构和最终用户企业的响应,以识别在标记,注释,清理,扩充和丰富机器学习模型的数据上花费了大量时间。
数据科学家80%以上的时间都花在准备数据上。尽管这是一个好兆头,但考虑到随着良好的数据进入建立分析模型,准确的人会得到输出。但是,理想情况下,数据科学家应该将更多的时间花在与数据交互,高级分析,培训和评估模型以及部署到生产上。
只有20%的时间进入流程的主要部分。为了克服时间限制,组织需要利用用于数据工程,标记和准备的专家解决方案来减少在清理,扩充,标记和丰富数据上花费的时间(取决于项目的复杂性)。
这将我们带入了“ 垃圾中的垃圾 ”概念,即输出的质量取决于输入的质量。
数据准备过程
以下是针对机器学习模型的数据准备过程的简要介绍:
数据提取数据工作流程的第一阶段是提取过程,通常是从非结构化源(如网页,PDF文档,假脱机文件,电子邮件等)中检索数据。部署从网络中提取信息的过程称为网络刮。
数据概要分析是检查现有数据以提高质量并通过格式带来结构的过程。这有助于评估质量和对特定标准的一致性。当数据集不平衡且配置不当时,大多数机器学习模型将无法正常工作。
数据清理可确保数据干净,全面,无错误,并提供准确的信息,因为它不仅可以检测文本和数字的异常值,还可以检测图像中无关的像素。您可以消除偏见和过时的信息,以确保您的数据是干净的。
数据转换是对数据进行转换以使其均匀。地址,名称和其他字段类型之类的数据以不同的格式表示,数据转换有助于对此进行标准化和规范化。
数据匿名化是从数据集中删除或加密个人信息以保护隐私的过程。
数据扩充用于使可用于训练模型的数据多样化。在不提取新信息的情况下引入其他信息包括裁剪和填充以训练神经网络。
数据采样识别大型数据集中的代表性子集,以分析和处理数据。
特征工程是将机器学习模型分类为好模型还是坏模型的主要决定因素。为了提高模型的准确性,您可以将数据集合并以将其合并为一个。
这是一个例子:
假设有两列,一列是收入,另一列是输出分类(A,B,C)。输出A,B,C取决于收入范围$ 2k-$ 3K,$ 4k-$ 5K和$ 6K-$ 7K。新功能是在收入范围内分配数值1,2和3。现在,这些数值被映射到我们最初创建的3个数据集。
在这里,收入范围是要素工程。
数据准备过程的另一个重要部分是标记。为了使这个概念易于理解,让我以热饮料(例如茶)为例。
现在,该项目的目标是确定特定类型茶中所含咖啡因的百分比或数量。
红茶含咖啡因20 毫克 茶+牛奶含咖啡因11 毫克 草 茶含咖啡因0毫克伯爵灰茶咖啡因40毫克
注意:(咖啡因百分比以100克茶计算)
因此,ML模型将为咖啡因含量最高的伯爵茶分配一个数值,例如1,为红茶分配2,依此类推。这将我们带入有助于识别数据集的标签概念。
数据标记-数据准备必不可少的组成部分
标记只是将标签分配给一组未标记的数据,以使其更易于识别以进行预测分析。
这些标签表明照片中的动物是狗还是狐狸(请参见下图)。
通过向模型提供数百万个标记数据,标记可以帮助机器学习模型猜测和预测一条未标记数据。
数据标记的一些用例:
标签是文本还是图像,以了解内容的情感,例如在推文中。
语音和文本NLP
是音频和文本源的标签。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29