京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者|Kin Lim Lee
编译|量子位
最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码。
数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方。
这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用。二是非常简单,加上注释最长的也不过11行。在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释。大家可以把这篇文章收藏起来,当做工具箱使用。
涵盖8大场景的数据清洗代码
这些数据清洗代码,一共涵盖8个场景,分别是:
删除多列、更改数据类型、将分类变量转换为数字变量、检查缺失数据、删除列中的字符串、删除列中的空格、用字符串连接两列(带条件)、转换时间戳(从字符串到日期时间格式)
删除多列
在进行数据分析时,并非所有的列都有用,用df.drop可以方便地删除你指定的列。
def drop_multiple_col(col_names_list, df): AIM -> Drop multiple columns based on their column names INPUT -> List of column names, df OUTPUT -> updated df with dropped columns ------ df.drop(col_names_list, axis=1, inplace=True) return df
转换数据类型
当数据集变大时,需要转换数据类型来节省内存。
def change_dtypes(col_int, col_float, df): AIM -> Changing dtypes to save memory INPUT -> List of column names (int, float), df OUTPUT -> updated df with smaller memory ------ df[col_int] = df[col_int].astype( int32 ) df[col_float] = df[col_float].astype( float32 )
将分类变量转换为数值变量
一些机器学习模型要求变量采用数值格式。这需要先将分类变量转换为数值变量。同时,你也可以保留分类变量,以便进行数据可视化。
def convert_cat2num(df):
# Convert categorical variable to numerical variable
num_encode = { col_1 : { YES :1, NO :0},
col_2 : { WON :1, LOSE :0, DRAW :0}}
df.replace(num_encode, inplace=True)
检查缺失数据
如果你要检查每列缺失数据的数量,使用下列代码是最快的方法。可以让你更好地了解哪些列缺失的数据更多,从而确定怎么进行下一步的数据清洗和分析操作。
def check_missing_data(df): # check for any missing data in the df (display in descending order) return df.isnull().sum().sort_values(ascending=False)
删除列中的字符串
有时候,会有新的字符或者其他奇怪的符号出现在字符串列中,这可以使用df[‘col_1’].replace很简单地把它们处理掉。
def remove_col_str(df): # remove a portion of string in a dataframe column - col_1 df[ col_1 ].replace(, , regex=True, inplace=True) # remove all the characters after (including ) for column - col_1 df[ col_1 ].replace( .* , , regex=True, inplace=True)
删除列中的空格
数据混乱的时候,什么情况都有可能发生。字符串开头经常会有一些空格。在删除列中字符串开头的空格时,下面的代码非常有用。
def remove_col_white_space(df): # remove white space at the beginning of string df[col] = df[col].str.lstrip()
用字符串连接两列(带条件)
当你想要有条件地用字符串将两列连接在一起时,这段代码很有帮助。比如,你可以在第一列结尾处设定某些字母,然后用它们与第二列连接在一起。根据需要,结尾处的字母也可以在连接完成后删除。
def concat_col_str_condition(df): # concat 2 columns with strings if the last 3 letters of the first column are pil mask = df[ col_1 ].str.endswith( pil , na=False) col_new = df[mask][ col_1 ] + df[mask][ col_2 ] col_new.replace( pil , , regex=True, inplace=True) # replace the pil with emtpy space
转换时间戳(从字符串到日期时间格式)
在处理时间序列数据时,我们很可能会遇到字符串格式的时间戳列。这意味着要将字符串格式转换为日期时间格式(或者其他根据我们的需求指定的格式) ,以便对数据进行有意义的分析。
def convert_str_datetime(df): AIM -> Convert datetime(String) to datetime(format we want) INPUT -> df OUTPUT -> updated df with new datetime format ------ df.insert(loc=2, column= timestamp , value=pd.to_datetime(df.transdate, format= %Y-%m-%d %H:%M:%S.%f ))
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15