京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Python3分钟
来源 | python3m
1 类型检查
类型检查是一个验证和施加类型约束的过程,编译器或解释器通常在编译或运行阶段做类型检查。例如,你不能拿一个string类型值除以浮点数。
用更简单的术语,类型检查仅仅就是查看变量和它们的类型,然后说这个表达式是合理的。
因此,现在我们知道类型检查是什么,明白这些术语真的很简单。
在静态类型语言(statically typed languages)中,类型检查发生在编译阶段(compile time),然而,在动态类型语言(dynamically typed languages)中,类型检查发生在运行阶段(run time)
2 它意味着什么?
2.1 类型声明
静态类型(static): 所有的变量类型必须被显示地声明,因为这些信息在编译阶段就被需要。例如,在 Java 中
float f = 0.5
动态(Dynamic): 显示声明不被要求,因为类型赋值发生在运行阶段。例如在 Python 中,
f = 0.5
2.2 性能
静态类型(static): 编译阶段做更多处理,但是运行时(run-time)性能更好
动态(Dynamic): 编译阶段更高效,但是运行时的类型检查会影响到性能
2.3 灵活性和出错
静态类型: 运行时出错机会更小,但是提供给程序员的灵活性不好
动态类型: 提供更多的灵活性但是运行时出错机会相对更大
2.4 记住
各种语言按照动态/静态,弱类型/强类型的划分:
3 什么是强类型/弱类型?
首先看下什么是强类型,在强类型中,不管在编译时还是运行时,一旦某个类型赋值给某个变量,它会持有这个类型,并且不能同其他类型在计算某个表达式时混合计算。例如在Python中:
data = 5 # 在runtime时,被赋值为整形 data = data + "xiaoming" # error
然而,在弱类型中,它是很容易与其他类型混合计算的,比如同样一门伟大的语言 Javascript,使用它:
var data = 5 data = data + 'xiaoming' //string和int可以结合
4 结论
类型检查确保一个表达式中的变量类型是合法的。在静态类型语言中,类型检查发生在编译阶段;动态类型语言,类型检查发生在运行阶段。
强类型语言有更强的类型检查机制,表达式计算中会做严格的类型检查;而弱类型语言允许各种变量类型间做一些运算。
Python是一门动态的(dynamic)且强类型(strong)语言。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27