
作者 | zglg
来源 | Python与算法社区
python里[] 表示一个列表,对容器类型的数据进行运算和操作,生成新的列表最高效、快速的办法,就是列表生成式。
它优雅、简洁,值得大家多多使用!今天盘点列表生成式在工作中的主要使用场景。
入门
1
range快速生成连续列表
In [1]: a = range(11) In [2]: a Out[2]: range(0, 11) In [3]: list(a) Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2
对列表里面的数据进行运算后重新生成一个新的列表:
In [5]: a = range(0,11) In [6]: b = [x**2 for x in a] In [7]: b Out[7]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
3
对一个列表里面的数据筛选,只计算[0,11) 中偶数的平方:
In [10]: a = range(11) In [11]: c = [x**2 for x in a if x%2==0] In [12]: c Out[12]: [0, 4, 16, 36, 64, 100]
4
前面列表生成式都只传一个参数x,带有两个参数的运算:
In [13]: a = range(5) In [14]: b = ['a','b','c','d','e'] In [20]: c = [str(y) + str(x) for x, y in zip(a,b)] In [21]: c Out[21]: ['a0', 'b1', 'c2', 'd3', 'e4']
5
结合字典,打印键值对:
In [22]: a = {'a':1,'b':2,'c':3} In [23]: b = [k+ '=' + v for k, v in a.items()] In [24]: b = [k+ '=' + str(v) for k, v in a.items()] In [25]: b Out[25]: ['a=1', 'b=2', 'c=3']
6
输出某个目录下的所有文件和文件夹的名称:
In [33]: [d for d in os.listdir('d:/summary')]
Out[33]: ['a.txt.txt', 'python-100']
7
列表中所有单词都转化为小写:
In [34]: a = ['Hello', 'World', '2019Python'] In [35]: [w.lower() for w in a] Out[35]: ['hello', 'world', '2019python']
进阶
8
将值分组:
In [36]: def bifurcate(lst, filter): ...: return [ ...: [x for i,x in enumerate(lst) if filter[i] == True], ...: [x for i,x in enumerate(lst) if filter[i] == False] ...: ] ...: In [37]: bifurcate(['beep', 'boop', 'foo', 'bar'], [True, True, False, True]) Out[37]: [['beep', 'boop', 'bar'], ['foo']]
9
进一步抽象例子8,根据指定函数fn 对lst 分组:
In [38]: def bifurcate_by(lst, fn): ...: return [ ...: [x for x in lst if fn(x)], ...: [x for x in lst if not fn(x)] ...: ] ...: In [39]: bifurcate_by(['beep', 'boop', 'foo', 'bar'], lambda x: x[0] == 'b') Out[39]: [['beep', 'boop', 'bar'], ['foo']]
10
返回可迭代对象的差集,注意首先都把a, b用set 包装
In [53]: def difference(a, b):
...: _a, _b =set(a),set(b)
...: return [item for item in _a if item not in _b]
...:
...:
In [54]: difference([1,1,2,3,3], [1, 2, 4])
Out[54]: [3]
11
进一步抽象10,根据函数fn 映射后选取差集,如下列表元素分别为单个元素和字典的例子:
In [61]: def difference_by(a, b, fn):
...: ...: _b = set(map(fn, b))
...: ...: return [item for item in a if fn(item) not in _b]
...: ...:
...:
In [62]: from math import floor
...: difference_by([2.1, 1.2], [2.3, 3.4],floor)
Out[62]: [1.2]
In [63]: difference_by([{ 'x': 2 }, { 'x': 1 }], [{ 'x': 1 }], lambda v : v['x'])
Out[63]: [{'x': 2}]
12
过滤非重复值,结合list 的count( 统计出元素在列表中出现次数):
In [64]: def filter_non_unique(lst): ...: return [item for item in lst if lst.count(item) == 1] In [65]: filter_non_unique([1, 2, 2, 3, 4, 4, 5]) Out[65]: [1, 3, 5]
熟练操作以上12个例子,就算掌握python 中非常有用的列表生成式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05