京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | zglg
来源 | Python与算法社区
python里[] 表示一个列表,对容器类型的数据进行运算和操作,生成新的列表最高效、快速的办法,就是列表生成式。
它优雅、简洁,值得大家多多使用!今天盘点列表生成式在工作中的主要使用场景。
入门
1
range快速生成连续列表
In [1]: a = range(11) In [2]: a Out[2]: range(0, 11) In [3]: list(a) Out[3]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
2
对列表里面的数据进行运算后重新生成一个新的列表:
In [5]: a = range(0,11) In [6]: b = [x**2 for x in a] In [7]: b Out[7]: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
3
对一个列表里面的数据筛选,只计算[0,11) 中偶数的平方:
In [10]: a = range(11) In [11]: c = [x**2 for x in a if x%2==0] In [12]: c Out[12]: [0, 4, 16, 36, 64, 100]
4
前面列表生成式都只传一个参数x,带有两个参数的运算:
In [13]: a = range(5) In [14]: b = ['a','b','c','d','e'] In [20]: c = [str(y) + str(x) for x, y in zip(a,b)] In [21]: c Out[21]: ['a0', 'b1', 'c2', 'd3', 'e4']
5
结合字典,打印键值对:
In [22]: a = {'a':1,'b':2,'c':3}
In [23]: b = [k+ '=' + v for k, v in a.items()]
In [24]: b = [k+ '=' + str(v) for k, v in a.items()]
In [25]: b
Out[25]: ['a=1', 'b=2', 'c=3']
6
输出某个目录下的所有文件和文件夹的名称:
In [33]: [d for d in os.listdir('d:/summary')]
Out[33]: ['a.txt.txt', 'python-100']
7
列表中所有单词都转化为小写:
In [34]: a = ['Hello', 'World', '2019Python'] In [35]: [w.lower() for w in a] Out[35]: ['hello', 'world', '2019python']
进阶
8
将值分组:
In [36]: def bifurcate(lst, filter): ...: return [ ...: [x for i,x in enumerate(lst) if filter[i] == True], ...: [x for i,x in enumerate(lst) if filter[i] == False] ...: ] ...: In [37]: bifurcate(['beep', 'boop', 'foo', 'bar'], [True, True, False, True]) Out[37]: [['beep', 'boop', 'bar'], ['foo']]
9
进一步抽象例子8,根据指定函数fn 对lst 分组:
In [38]: def bifurcate_by(lst, fn): ...: return [ ...: [x for x in lst if fn(x)], ...: [x for x in lst if not fn(x)] ...: ] ...: In [39]: bifurcate_by(['beep', 'boop', 'foo', 'bar'], lambda x: x[0] == 'b') Out[39]: [['beep', 'boop', 'bar'], ['foo']]
10
返回可迭代对象的差集,注意首先都把a, b用set 包装
In [53]: def difference(a, b):
...: _a, _b =set(a),set(b)
...: return [item for item in _a if item not in _b]
...:
...:
In [54]: difference([1,1,2,3,3], [1, 2, 4])
Out[54]: [3]
11
进一步抽象10,根据函数fn 映射后选取差集,如下列表元素分别为单个元素和字典的例子:
In [61]: def difference_by(a, b, fn):
...: ...: _b = set(map(fn, b))
...: ...: return [item for item in a if fn(item) not in _b]
...: ...:
...:
In [62]: from math import floor
...: difference_by([2.1, 1.2], [2.3, 3.4],floor)
Out[62]: [1.2]
In [63]: difference_by([{ 'x': 2 }, { 'x': 1 }], [{ 'x': 1 }], lambda v : v['x'])
Out[63]: [{'x': 2}]
12
过滤非重复值,结合list 的count( 统计出元素在列表中出现次数):
In [64]: def filter_non_unique(lst): ...: return [item for item in lst if lst.count(item) == 1] In [65]: filter_non_unique([1, 2, 2, 3, 4, 4, 5]) Out[65]: [1, 3, 5]
熟练操作以上12个例子,就算掌握python 中非常有用的列表生成式。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03