作者 | Josh Thompson
来源 | 数据派THU
Choosing the Right Clustering Algorithm for your Dataset - KDnuggets
聚类算法十分容易上手,但是选择恰当的聚类算法并不是一件容易的事。
数据聚类是搭建一个正确数据模型的重要步骤。数据分析应当根据数据的共同点整理信息。然而主要问题是,什么通用性参数可以给出最佳结果,以及什么才能称为“最佳”。
本文适用于菜鸟数据科学家或想提升聚类算法能力的专家。下文包括最广泛使用的聚类算法及其概况。根据每种方法的特殊性,本文针对其应用提出了建议。
四种基本算法以及如何选择
聚类模型可以分为四种常见的算法类别。尽管零零散散的聚类算法不少于100种,但是其中大部分的流行程度以及应用领域相对有限。
基于整个数据集对象间距离计算的聚类方法,称为基于连通性的聚类(connectivity-based)或层次聚类。根据算法的“方向”,它可以组合或反过来分解信息——聚集和分解的名称正是源于这种方向的区别。最流行和合理的类型是聚集型,你可以从输入所有数据开始,然后将这些数据点组合成越来越大的簇,直到达到极限。
层次聚类的一个典型案例是植物的分类。数据集的“树”从具体物种开始,以一些植物王国结束,每个植物王国都由更小的簇组成(门、类、阶等)。
层次聚类算法将返回树状图数据,该树状图展示了信息的结构,而不是集群上的具体分类。这样的特点既有好处,也有一些问题:算法会变得很复杂,且不适用于几乎没有层次的数据集。这种算法的性能也较差:由于存在大量的迭代,因此整个处理过程浪费了很多不必要的时间。最重要的是,这种分层算法并不能得到精确的结构。
同时,从预设的类别一直分解到所有的数据点,类别的个数不会对最终结果产生实质性影响,也不会影响预设的距离度量,该距离度量粗略测量和近似估计得到的。
根据我的经验,由于简单易操作,基于质心的聚类(Centroid-based)是最常出现的模型。 该模型旨在将数据集的每个对象划分为特定的类别。 簇数(k)是随机选择的,这可能是该方法的最大问题。 由于与k最近邻居(kNN)相似,该k均值算法在机器学习中特别受欢迎。
计算过程包括多个步骤。首先,输入数据集的目标类别数。聚类的中心应当尽可能分散,这有助于提高结果的准确性。
其次,该算法找到数据集的每个对象与每个聚类中心之间的距离。最小坐标距离(若使用图形表示)确定了将对象移动到哪个群集。
之后,将根据类别中所有点的坐标平均值重新计算聚类的中心。重复算法的上一步,但是计算中要使用簇的新中心点。除非达到某些条件,否则此类迭代将继续。例如,当簇的中心距上次迭代没有移动或移动不明显时,聚类将结束。
尽管数学和代码都很简单,但k均值仍有一些缺点,因此我们无法在所有情景中使用它。缺点包括:
相比之下,期望最大化算法可以避免那些复杂情况,同时提供更高的准确性。简而言之,它计算每个数据集点与我们指定的所有聚类的关联概率。用于该聚类模型的主要工具是高斯混合模型(GMM)–假设数据集的点服从高斯分布。
k-means算法可以算是EM原理的简化版本。它们都需要手动输入簇数,这是此类方法要面对的主要问题。除此之外,计算原理(对于GMM或k均值)很简单:簇的近似范围是在每次新迭代中逐渐更新的。
与基于质心的模型不同,EM算法允许对两个或多个聚类的点进行分类-它仅展示每个事件的可能性,你可以使用该事件进行进一步的分析。更重要的是,每个聚类的边界组成了不同度量的椭球体。这与k均值聚类不同,k均值聚类方法用圆形表示。但是,该算法对于不服从高斯分布的数据集根本不起作用。这也是该方法的主要缺点:它更适用于理论问题,而不是实际的测量或观察。
最后,基于数据密度的聚类成为数据科学家心中的最爱。
这个名字已经包括了模型的要点——将数据集划分为聚类,计数器会输入ε参数,即“邻居”距离。因此,如果目标点位于半径为ε的圆(球)内,则它属于该集群。
具有噪声的基于密度的聚类方法(DBSCAN)将逐步检查每个对象,将其状态更改为“已查看”,将其划分到具体的类别或噪声中,直到最终处理整个数据集。用DBSCAN确定的簇可以具有任意形状,因此非常精确。此外,该算法无需人为地设定簇数 —— 算法可以自动决定。
尽管如此,DBSCAN也有一些缺点。如果数据集由可变密度簇组成,则该方法的结果较差;如果对象的位置太近,并且无法轻易估算出ε参数,那么这也不是一个很好的选择。
总而言之,我们并不能说选择了错误的算法,只能说其中有些算法会更适合特定的数据集结构。为了采用最佳的(看起来更恰当的)算法,你需要全面了解它们的优缺点。
例如,如果某些算法不符合数据集规范,则可以从一开始就将其排除在外。为避免繁琐的工作,你可以花一些时间来记住这些信息,而无需反复试验并从自己的错误中学习。
我们希望本文能帮助你在初始阶段选择最好的算法。继续这了不起的工作吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03