
作者 | Prakhar Ganesh
编译 | 安然
近日,发表在《DataScience》上的一篇文章,使用深度学习方法,从数据处理、循环网络、RNN上的LSTM、CNN-LSTMs等方面介绍了时间序列分析,同时解释了时间序列的概念以及为什么选择深度学习的方法等问题。
什么是时间序列分析?
时间序列是一系列数据点,使用时间戳进行排序,是对时间序列数据的分析。
从水果的每日价格到电路提供的电压输出的读数,时间序列的范围非常大,时间序列分析的领域也是如此。分析时间序列数据通常侧重于预测,但也可以包括分类,聚类,异常检测等。
例如,通过研究过去的价格变化模式,可以尝试预测曾经想要购买的一款手表的价格,判断它的最佳购买时间!
为什么选择深度学习?
时间序列数据可能非常不稳定且复杂。深度学习方法不假设数据的基本模式,而且对噪声(在时间序列数据中很常见)的鲁棒性更强,是时间序列分析的首选方法。
数据处理
在继续进行预测之前,重要的是首先以数学模型可以理解的形式处理数据。通过使用滑动窗口切出数据点,可以将时间序列数据转换为监督学习问题。然后,每个滑动窗口的预期输出是窗口结束后的时间步长。
循环网络
循环网络一种复杂的深度学习网络。它们可以记住过去,因此是序列处理的首选。RNN单元是循环网络的骨干。
RNN单元具有2个传入连接,即输入和先前状态。同样,它们还具有2个传出连接,即输出和当前状态。这种状态有助于他们结合过去和当前输入的信息。
一个简单的RNN单元太简单了,无法统一用于跨多个域的时间序列分析。因此,多年来提出了各种各样的变体,以使循环网络适应各个领域,但核心思想保持不变!、
LSTM单元格是特殊的RNN单元格,其中带有“门”,其本质上是介于0到1之间的值,对应于状态输入。这些门背后的直觉是忘记或保留过去的信息,这使他们不仅可以记住过去,还可以记住更多。
CNN-LSTMs
由于状态信息要经过每一个步长,所以RNNs只能记住最近的过去。
另一方面,像LSTM和GRU这样的门控网络可以处理相对较长的序列,但是即使这些网络也有其局限性!!为了更好地理解这一问题,还可以研究消失和爆炸的梯度。
那么如何处理很长的序列呢?最明显的解决办法就是缩短它们!!但如何?一种方法是丢弃信号中呈现的细粒度时间信息。
这可以通过将一小组数据点累积在一起并从中创建特征来完成,然后将这些特征像单个数据点一样传递给LSTM。
多尺度分层LSTMs
看看CNN-LSTM架构,有一件事浮现在我的脑海中……为什么要使用CNNs来合并那些组?为什么不使用不同的LSTM呢!多尺度分层LSTMs是基于相同的思想构建的。
输入是在多个尺度上处理的,每个尺度都致力于做一些独特的事情。适用于更细粒度输入的较低标度专注于提供细粒度(但仅是最近的)时间信息。
另一方面,较高的比例集中在提供完整的图片(但没有细粒度的细节)上。多个刻度可以一起更好地理解时间序列。
下一步是什么?
时间序列分析是一个非常古老的领域,包含各种跨学科的问题,每种陈述问题都有其自身的挑战。
然而,尽管每个领域都根据自己的要求调整了模型,但是时间序列分析中仍然有一些一般性的研究方向需要加以改进。
例如,从最基本的RNN单元到多尺度分层LSTM的每项开发都以某种方式专注于处理更长的序列,但是即使最新的LSTM修改也有其自身的序列长度限制,并且目前仍然没有一种架构可以真正处理极长的序列。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15