京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
Tableau内置的连接器可以连接到所有常用的数据源。
数据连接器
目前可以连接70多种数据源,分为本地连接和服务器连接。 Tableau支持的本地连接包括Excel、txt、csv、json等各类常见的源数据格式,还支持多种空间文件, 为使用地图分析提供了条件。
Tableau支持的服务连接包括各类数据库(如Mysql、Oracle、MongoDB)、在线数据服务(如google analtics)等,可以根据使用需要,与目标服务器建立连接关系。
如果以上提供的连接不满足您的需求,可以选择使用“其他数据库 (ODBC)”或“Web 数据连接器”创建自己的连接。
设置数据源
Tableau数据源是数据与Tableau之间的链接,本质上是数据、连接信息以及基于数据进行的自定义操作的总和。
数据源包含:
本地文件连接
打开Tableau Desktop进入数据连接界面,在连接到文件中选择要连接的文件类型。这里以Excel文件为例,单击“Microsoft Excel”在弹出的“打开”对话框中找到想要连接的文件。
双击或拖动表名至画布区,下方会显示数据预览。
数据库连接
在数据连接界面,连接到服务器中选择要连接的服务器。这里以“MySQL”为例,单击“MySQL”在弹出“MySQL”对话框输入服务器IP、端口号、用户名及密码即可登录到MySQL服务器。
建立连接后,在数据库列表中选择要连接的数据库,下方会显示当前数据库下可用的工作表。双击或拖动表名至画布区,下方会显示数据预览。
也可以双击或拖动“新自定义SQL”至画布区,输入SELECT语句以连接想要的数据。
剪贴板粘贴
组合数据源
在一个工作簿中可以同时创建不同的数据连接。
数据联结
当需要从多个数据表中获取数据时,则要用到数据联接操作。这里以两表联结为例,以两个表的共有字段作为关键字段来建立联结关系。 为了简单直观的操作演示,本文使用自制的Excel数据集demo,文件中包含table1和table2两个数据表。
联结方式
Tableau中支持四种联结方式:内联接、左联接、右联接和完全外部联接。通常情况,Tableau会自动判断两张表的关键字段并进行关联,如果关联不正确或关键字段不一致无法自动关联,可以手动进行关联。
数据合并
当需要将有多个结构一致的数据表整合汇总在一起时,则可以使用数据合并。数据联接是横向扩展,数据合并是纵向增加。 进行数据合并的要求是,每个数据表的==字段名、个数、顺序和数据类型必须完全一致==。 为了简单直观的操作演示,本文使用自制的Excel数据集demo,文件中包含三个数据表。
手动数据合并
双击或拖放“新建并集”至画布区,将需要合并的数据表拖入弹出的并集(手动)对话框。
合并后的数据表包含三个数据表的所有数据,并且各字段一一对应。需要注意的是,新增了sheet和table name两个字段,用于说明并集中的值的来源。
自动数据合并
双击或拖放“新建并集”至画布区,在弹出的“并集”对话框中选择“通配符(自动)”。 在“工作表”位置,将匹配内容改写为“班”,其中“班”是共有的名称,是通配符,用于匹配三个工作表。
合并后的数据表包含三个数据表的所有数据,并且各字段一一对应。需要注意的是,新增了path、sheet两个字段,用于说明并集中的值的来源路径及表名称。
数据连接方式
与数据源完成连接后,将数据表拖放至画布区,就可以在画布区看到“连接”方式的选择,分别是“实时”和“数据提取”。 实时:直接从数据源实时查询获取数据信息,Tableau不对源数据进行存储。 数据提取:将数据源的数据保存到本地计算机,大幅缩短Tableau查询载入源数据的时间。
为什么有两种连接方式
数据提取
数据提取是保存的数据子集。 在创建数据的数据提取时,可以通过使用筛选器和配置其他限制来减少数据总数。 创建数据提取后,可使用原始数据中的数据对其进行刷新。在刷新数据时,可以选择进行完全刷新或增量刷新。 完全刷新:默认方式,每次都会重新获取数据源的数据,创建的本地副本与数据源一致。 增量刷新:仅刷新自上次数据提取后新增的行。
数据提取的优势
创建数据提取
选择数据提取后,会显示“编辑”和“刷新”按钮。单击“编辑”在弹出的“数据提取”对话框中设置数据提取的要求。
指定在数据提取中存储数据的方式
PS:“单个表”和“多个表”选项只会影响数据提取中数据的存储方式,不影响数据提取中的表在“数据源”页面上的显示方式。 假设您的数据提取由三个表组成。如果直接打开配置为使用默认选项“单个表”的数据提取 (.hyper) 文件,在“数据源”页面上只会显示一个表。但是,如果打开使用打包数据源 (.tdsx) 文件的数据提取或包含其对应数据提取 (.hyper) 文件的数据源 (.tdsx) 文件,在“数据源”页面上可以看到包含数据提取的全部三个表。
指定要提取的数据量
设置完成后,单击工作表标签页可启动数据提取创建过程。在随后显示的对话框中,选择一个用于保存数据提取的位置,为该数据提取文件指定名称,然后单击“保存”即可。
在抽样数据与整个数据提取之间切换
当您使用大型数据提取时,您可能需要创建一个带数据样本的数据提取,以便每次将字段放在工作表标签页中的功能区上时,您都可以设置视图,同时避免长时间查询。然后,可以在使用带数据样本的数据提取和使用整个数据源之间进行切换,方法是在“数据”菜单中选择数据源,然后选择“使用数据提取”。
实时和数据提取的选择
什么情况下选择“实时”
什么情况下选择“数据提取”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26