
来源|AIT News Desk
编译|CDA数据分析师
Dotscience Emerges from Stealth to Eliminate the Biggest Pain Points of Operationalizing AI in the Enterprise
Dotscience是DevOps机器学习(ML)的先驱,凭借其用于协作,端到端ML数据和模型管理的平台而脱颖而出。通过为团队提供协作跟踪运行的独特能力,培训AI模型时使用的数据,代码和参数记录Dotscience为包括金融科技,自动驾驶汽车,医疗保健和咨询在内的行业的ML和数据科学团队授权,以实现可重复性,问责制,协作跨AI模型生命周期的持续交付。Dotscience平台现在可以作为SaaS或本地提供,并在8月份的亚马逊网络服务(AWS)市场上提供。
“人工智能开发的现状很像20世纪90年代的软件开发。在称为DevOps的运动之前,版本控制,持续集成和持续交付等现代最佳实践远没有那么普遍,软件需要六个月才能发货是正常的。现在,软件只需几分钟即可完成,“ Dotscience创始人兼首席执行官Luke Marsden表示。“在Dotscience,我们正在应用相同的协作,控制和持续交付DevOps的原则到AI,以简化,加速和控制AI开发。”
人工智能开发和运营挑战
数据科学和机器学习团队通常面临众多问题,这些问题使ML项目更有可能失败并为业务创造财务,声誉或法律风险。这些包括浪费时间,协作困难,手动跟踪数据时出错,无可重复性或来源,缺乏自动化测试,手动部署模型,不受监控的模型以及丢失正在运行的内容以及它来自哪里导致“雪花部署”。
根据德勤的“企业人工智能状况,第2版”,大多数受访者表示“实施,整合到角色和功能,以及衡量和证明人工智能解决方案的商业价值是人工智能计划的最大挑战。”根据Dotscience的“ 人工智能应用开发和运营状况2019 ”市场研究结果今天发布的调查结果显示,受访者在AI工作负载中遇到的三大挑战是重复工作(33.2%),在团队成员离职后重写模型(27.8%)并且难以证明价值(27%)。该报告评估了企业如何在今天部署AI,并在构建,部署和迭代AI时调查问责制和协作的需求。
“数据科学家和ML工程师可能甚至都没有意识到他们已经存在的问题,因为他们习惯于使用破碎的流程,并且不了解可以更好地完成ML的解决方案,”Marsden解释道。“解决这些问题将带来更高效,更有效的AI团队以及更好,更安全的ML模型。”
“如果你将机器学习应用程序投入生产,再现性就变得非常重要,” 人工智能和DevOps首席分析师James Kobielus表示,他们使用SiliconANGLE的Wikibon团队。“Dotscience能够跟踪人工智能培训,保持完整的审计跟踪,并提供对机器学习应用程序来源的全面可见性,使其非常适合这种不断增长的企业需求。同样重要的是,Dotscience确保跨混合云平台的可重复性的能力确保了当今企业AI环境中复杂的DevOps工具链的可重复性。“
Dotscience平台提供端到端的ML数据和模型管理
Dotscience提供了一种工具,通过授权数据科学家和ML工程师以他们熟悉的方式工作来管理完整的AI生命周期。数据科学和ML团队可以利用易于使用的平台,并提供一个单独的地方来协作,开发,测试,监控和交付他们的ML项目。
“实际上,与市场上的其他产品不同,这意味着团队可以继续使用相同的开发工具,ML框架,语言,数据源和计算,而不是被迫进入有围墙的花园,这可能导致供应商锁定和陡峭学习曲线,“ Dotscience产品和营销副总裁Mark Coleman说。“由于Dotscience会跟踪并打包进入数据工程和模型创建过程的每次运行,因此用户可以复制彼此的工作,轻松协作并根据需要进行跟踪。”
Dotscience为数据科学和ML团队提供以下主要优势:
无缝灵活性和集成均来自一个平台: Dotscience用户可以轻松地将任何计算连接到平台,无论是他们自己的笔记本电脑,基于云的VM还是本地裸机。在用户训练模型后,Dotscience与持续集成和监控工具集成,以便他们可以部署并监控生产中的模型,将所有相关信息保存在一个位置。
•最佳的团队生产力:通过提供自动化的ML知识库来消除孤岛,Dotscience消除了“关键人物风险”,使任何数据科学家或ML工程师都可以轻松地从另一个人那里找到一个在当今竞争中特别重要的属性招聘景观。Dotscience不仅允许团队无缝协作,还可以通过跟踪模型开发阶段中每个元素的每个版本来发现以前的工作并确切了解它是如何构建的。
•灵活地访问ML开发环境的计算,混合云可移植性:团队成员可以开始使用他们的笔记本电脑,然后将他们的AI工作负载转移到更大的云计算机或裸机GPU平台,当他们需要额外的电源时,所有这些都可以无缝地完成,而无需创建支持请求。重现开发环境所需的整个代码,数据,环境和超参数包以这样的方式捆绑在一起,即从一个云移动到另一个云或在本地是无缝的。
•能够处理来自任何来源的数据:Dotscience可以处理直接存储在Dotscience中的平面文件,远程对象存储中的数据(即S3或S3兼容,Azure或GCS)以及来自SQL,NoSQL和Spark数据湖的数据。这种灵活性允许数据科学和ML团队立即开始使用已经使用的数据源。Dotscience不强制摄取所有数据; 在给定兼容的对象存储库的情况下,它可以跟踪已存在的数据的来源。
•允许AI和数据科学团队使用他们关心的工具,同时消除对生产力不重要的障碍:使用Dotscience的跟踪工作流程,数据科学家和ML工程师可以使用开源工具进行他们熟悉的模型培训爱,如PyTorch,Keras和TensorFlow。他们可以在应用程序中原生使用Jupyter笔记本,或者选择在命令行上工作,使他们能够使用他们选择的任何IDE。
•保证遵守当前和未来的法规:ML模型用于通过设计做出决策,但如果做出的决策不正确,则可能导致严重的财务,声誉和法律风险。Dotscience既可以监控ML模型,也可以及早发现问题,还可以在法律上重现发生的任何问题,以便快速解决这些问题,并可以自信地进行部署。
用于ML平台的Dotscience DevOps现在可作为SaaS,本地或通过AWS Marketplace提供
Dotscience提供端到端的ML生命周期管理,无需强制用户更改其工作实践,此方法也扩展到安装选项。 客户可以选择部署托管SaaS并自带计算,或者手动安装完全私有版本的Dotscience,也可以通过AWS Marketplace中的Dotscience安装程序安装,该安装程序将于8月上市。Microsoft Azure和Google Cloud Platform的安装程序也将很快推出。这种灵活性意味着广泛的用户群可以访问集成的ML平台,为数据科学家提供统一的版本控制和协作。
Dotscience受到AI领导者的信任
“ML的世界可以从过去10年中为处理软件工程生命周期而开发的所有最佳实践中学到很多东西。Dotscience有可能将一些艰苦学习的课程带入ML世界,而不会迫使数据科学家和研究人员完全放弃他们选择的工具,如Jupyter Notebooks。这是一个大胆的主张,有可能产生巨大影响。“
“在工业规模上合作和维护ML项目的流程和工具尚不像传统软件项目那样成熟。ML工作流程带来了一些额外的挑战,这些挑战并不完全适合软件DevOps流程。我很高兴与Dotscience合作,在我们即将开展的项目中应对这些挑战,因为他们积极致力于协作的结构化和集中化,以便扩展到更大的团队和项目规模。“
“Dotscience产品在确保机器学习模型的数据来源方面填补了一个关键性的空白。通过提供数据源作为服务,Dotscience可以在不降低数据科学团队速度的情况下跟踪工作,并提供对数据完整性以及确保关键业务利益相关者可信度所需的流程的高度可视性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15