京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 吹牛Z
来源 | 数据不吹牛
据某数据来源统计,学习了Pandas的同学,有超过60%仍然投向了Excel的怀抱,之所以做此下策,多半是因为刚开始用Python处理数据时,选择想要的行和列实在太痛苦,完全没有Excel想要哪里点哪里的快感。
初识Pandas最基础的列向索引在这里就不多加介绍了,今天我们给大家介绍的是,结合场景详细介绍两种常用的索引方式:
首先,简单介绍一下练习的案例数据:
和第一篇数据集一样,记录着不同流量来源下,各渠道来源明细所对应的访客数、支付转化率和客单价。数据集虽然简短(复杂的案例数据集在基础篇完结后会如约而至),但是有足够的代表性,下面开始我们索引的表演。
01 基于位置(数字)的索引
先看一下索引的操作方式:
我们需要根据实际情况,填入对应的行参数和列参数。
场景一(行选取)
目标:选择“流量来源”等于“一级”的所有行。
思路:手指戳屏幕数一数,一级的渠道,是从第1行到第13行,对应行索引是0-12,但Python切片默认是含首不含尾的,要想选取0-12的索引行,我们得输入“0:13”,列想要全部选取,则输入冒号“:”即可。
场景二(列选取)
目标:我们想要把所有渠道的流量来源和客单价单拎出来看一看。
思路:所有流量渠道,也就是所有行,在第一个行参数的位置我们输入“:”;再看列,流量来源是第1列,客单价是第5列,对应的列索引分别是0和4:
值得注意的是,如果我们要跨列选取,得先把位置参数构造成列表形式,这里就是[0,4],如果是连续选取,则无需构造成列表,直接输入0:5(选取索引为0的列到索引为4的列)就好。
场景三(行列交叉选取)
目标:我们想要看一看二级、三级流量来源、来源明细对应的访客和支付转化率
思路:先看行,二级三级渠道对应行索引是13:17,再次强调索引含首不含尾的原则,我们传入的行参数是13:18;列的话我们需要流量来源、来源明细、访客和转化,也就是前4列,传入参数0:4。
02 基于名称(标签)的索引
为了建立起横向对比的体感,我们依然沿用上面三个场景。
场景一:选择一级渠道的所有行。
思路:这次我们不用一个个数位置了,要筛选流量渠道为"一级"的所有行,只需做一个判断,判断流量来源这一列,哪些值等于"一级"。
返回的结果由True和False(布尔型)构成,在这个例子中分别代表结果等于一级和非一级。在loc方法中,我们可以把这一列判断得到的值传入行参数位置,Pandas会默认返回结果为True的行(这里是索引从0到12的行),而丢掉结果为False的行,直接上例子:
场景二:我们想要把所有渠道的流量来源和客单价单拎出来看一看。
思路:所有渠道等于所有行,我们在行参数位置直接输入“:”,要提取流量来源和客单价列,直接输入名称到列参数位置,由于这里涉及到两列,所以得用列表包起来:
场景三:我们想要提取二级、三级流量来源、来源明细对应的访客和支付转化率。
思路:行提取用判断,列提取输入具体名称参数。
此处插播一条isin函数的广告,这个函数能够帮助我们快速判断源数据中某一列(Series)的值是否等于列表中的值。拿案例来说,df['流量来源'].isin(['二级','三级']),判断的是流量来源这一列的值,是否等于“二级”或者“三级”,如果等于(等于任意一个)就返回True,否则返回False。我们再把这个布尔型判断结果传入行参数,就能够很容易的得到流量来源等于二级或者三级的渠道。
既然loc的应用场景更加广泛,应该给他加个鸡腿,再来个接地气的场景练练手。
插入场景之前,我们先花30秒的时间捋一捋Pandas中列(Series)向求值的用法,具体操作如下:
只需要加个尾巴,均值、标准差等统计数值就出来了,了解完这个,下面正式进入场景四。
场景四:对于流量渠道数据,我们真正应该关注的是优质渠道,假如这里我们定义访客数、转化率、客单价都高于平均值渠道是优质渠道,那怎么找到这些渠道呢?
思路:优质渠道,得同时满足访客、转化、客单高于平均值这三个条件,这是解题的关键。
先看看均值各是多少:
再判断各指标列是否大于均值:
要三个条件同时满足,他们之间是一个“且”的关系(同时满足),在pandas中,要表示同时满足,各条件之间要用"&"符号连接,条件内部最好用括号区分;如果是“或”的关系(满足一个即可),则用“|”符号连接:
这样连接之后,返回True则表示该渠道同时满足访客、转化率、客单价都高于均值的条件,接下来我们只需要把这些值传入到行参数的位置。
到这一步,我们直接筛选出了4条关键指标都高于均值的优质渠道。
这两种索引方式,分别是基于位置(数字)的索引和基于名称(标签)的索引,关键在于把脑海中想要选取的行和列,映射到对应的行参数与列参数中去。
只要稍加练习,我们就能够随心所欲的用pandas处理和分析数据,迈过了这一步之后,你会发现和Excel相比,Python是如此的美艳动人。
这是Python数据分析实战基础的第一篇内容,主要是和Pandas来个简单的邂逅。已经熟练掌握Pandas的同学,可以加快手速滑动浏览或者直接略过本文。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26