
作者 | Edwin Lisowski
编译 | CDA数据分析师
XGBoost and Random Forest with Bayesian Optimisation
在这篇文章中,我们将介绍带有贝叶斯优化算法的两种流行的算法即XGBoost和随机森林,并指出这些算法的优缺点。XGBoost(XGB)和随机森林(RF)都是集成学习方法,并通过组合各个决策树的输出(我们假设基于树的XGB或RF)来预测(分类或回归)。
让我们深入比较一下 - XGBoost与Random Forest
XGBoost或Gradient Boosting
XGBoost每次构建一个决策树,每一个新的树都修正以前训练过的决策树所产生的错误。
XGBoost应用程序的示例
在Addepto,我们使用XGBoost模型来解决异常检测问题,例如在监督学习方法中。在这种情况下,XGB非常有用,因为数据集通常非常不平衡。此类数据集的示例是移动应用中的用户/消费者交易,能量消耗或用户行为。
优点
由于通过优化目标函数导出了增强树,基本上XGB可以用来解决几乎所有可以写出渐变的目标函数。这包括排名和泊松回归等内容,RF难以实现。
缺点
如果数据有噪声,XGB模型对过度拟合更敏感。由于树木是按顺序建造的,因此培训通常需要更长时间。GBM比RF更难调整。通常有三个参数:树的数量,树的深度和学习率,并且构建的每个树通常是浅的。
随机森林(RF)使用随机数据样本独立训练每棵树。这种随机性有助于使模型比单个决策树更健壮。由于RF不太可能过度拟合训练数据。
随机森林应用示例
随机森林差异性已被用于各种应用,例如,基于组织标记数据找到患者群。在以下两种情况下,随机森林模型对于这种应用非常有吸引力:
我们的目标是为具有强相关特征的高维问题提供高预测精度。
我们的数据集非常嘈杂,并且包含许多缺失值,例如,某些属性是分类或半连续的。
优点
随机森林中的模型调整比XGBoost更容易。在RF中,我们有两个主要参数:每个节点要选择的特征数量和决策树的数量。RF比XGB更难装配。
缺点
随机森林算法的主要限制是大量的树可以使算法对实时预测变慢。对于包含具有不同级别数的分类变量的数据,随机森林偏向于具有更多级别的那些属性。
贝叶斯优化是一种优化功能的技术,其评估成本很高。它建立目标函数的后验分布,并使用高斯过程回归计算该分布中的不确定性,然后使用获取函数来决定采样的位置。贝叶斯优化专注于解决问题:
max f(x)(x∈A)
超参数的尺寸(x∈Rd)经常在最成功的应用d <20。
通常设置甲IA超矩形(x∈R d:ai ≤ xi ≤ bi)。目标函数是连续的,这是使用高斯过程回归建模所需的。它也缺乏像凹面或线性这样的特殊结构,这使得利用这种结构来提高效率的技术徒劳无功。贝叶斯优化由两个主要组成部分组成:用于对目标函数建模的贝叶斯统计模型和用于决定下一步采样的采集函数。
据初始空间填充实验设计评估目标后,它们被迭代地用于分配N个评估的预算的剩余部分,如下所示:
我们可以说贝叶斯优化是为黑盒无导数全局优化而设计来总结这个问题。它在机器学习中调整超参数非常受欢迎。
下面是整个优化的图形摘要:具有后验分布的高斯过程、观察和置信区间以及效用函数,其中最大值表示下一个样本点。
由于效用函数,贝叶斯优化在调整机器学习算法的参数方面比网格或随机搜索技术更有效。它可以有效地平衡“探索”和“利用”,找到全局最优。
为了呈现贝叶斯优化,我们使用用Python编写的BayesianOptimization库来调整随机森林和XGBoost分类算法的超参数。我们需要通过pip安装它:
pip install bayesian-optimization
现在让我们训练我们的模型。首先我们导入所需的库:
#Import libraries
import pandas as pd
import numpy as np
from bayes_opt import BayesianOptimization
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_val_score
我们定义了一个函数来运行贝叶斯优化给定数据,优化函数及其超参数:
#Bayesian optimization
def bayesian_optimization(dataset, function, parameters):
X_train, y_train, X_test, y_test = dataset
n_iterations = 5
gp_params = {"alpha": 1e-4}
BO = BayesianOptimization(function, parameters)
BO.maximize(n_iter=n_iterations, **gp_params)
return BO.max
我们定义了优化函数,即随机森林分类器及其超参数nestimators,maxdepth和minsamplessplit。另外,我们使用给定数据集上的交叉验证分数的平均值:
def rfc_optimization(cv_splits):
def function(n_estimators, max_depth, min_samples_split):
return cross_val_score(
RandomForestClassifier(
n_estimators=int(max(n_estimators,0)),
max_depth=int(max(max_depth,1)),
min_samples_split=int(max(min_samples_split,2)),
n_jobs=-1,
random_state=42,
class_weight="balanced"),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
n_jobs=-1).mean()
parameters = {"n_estimators": (10, 1000),
"max_depth": (1, 150),
"min_samples_split": (2, 10)}
return function, parameters
类似地,我们为XGBoost分类器定义函数和超参数:
def xgb_optimization(cv_splits, eval_set):
def function(eta, gamma, max_depth):
return cross_val_score(
xgb.XGBClassifier(
objective="binary:logistic",
learning_rate=max(eta, 0),
gamma=max(gamma, 0),
max_depth=int(max_depth),
seed=42,
nthread=-1,
scale_pos_weight = len(y_train[y_train == 0])/
len(y_train[y_train == 1])),
X=X_train,
y=y_train,
cv=cv_splits,
scoring="roc_auc",
fit_params={
"early_stopping_rounds": 10,
"eval_metric": "auc",
"eval_set": eval_set},
n_jobs=-1).mean()
parameters = {"eta": (0.001, 0.4),
"gamma": (0, 20),
"max_depth": (1, 2000)}
return function, parameters
现在基于选择的分类器,我们可以优化它并训练模型:
#Train model
def train(X_train, y_train, X_test, y_test, function, parameters):
dataset = (X_train, y_train, X_test, y_test)
cv_splits = 4
best_solution = bayesian_optimization(dataset, function, parameters)
params = best_solution["params"]
model = RandomForestClassifier(
n_estimators=int(max(params["n_estimators"], 0)),
max_depth=int(max(params["max_depth"], 1)),
min_samples_split=int(max(params["min_samples_split"], 2)),
n_jobs=-1,
random_state=42,
class_weight="balanced")
model.fit(X_train, y_train)
return model
我们使用AdventureWorksDW2017 SQL Server数据库的视图[dbo].[vTargetMail]作为示例数据,我们可以依据个人数据预测人们是否购买自行车。作为贝叶斯优化的结果,我们提取出了连续样本:
我们可以看到贝叶斯优化在第23步中找到了最佳参数,在测试数据集上得出0.8622 AUC分数。如果要检查更多样品,这个结果可能会更高。我们优化的随机森林模型具有以下ROC AUC曲线:
我们提出了一种使用贝叶斯优化在机器学习中调整超参数的简单方法,贝叶斯优化是一种更快的方法,可以找到最优值,而且比网格或随机搜索方法更先进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15