
作者 | 王新港
出品 | CDA数据分析研究院
马云曾在卸任演讲的时候说过这样一段话:
“很多人还没搞清楚什么是PC互联网,移动互联网来了,我们还没搞清楚移动互联的时候,大数据时代又来了。”
而大数据专家埃里克·西格尔 博士曾在《大数据预测》一书中描绘了一个大数据时代下的一天:
2020年的一天,在你驱车前往公司的路上,导航系统通过预测交通流量,会自动帮你选择一条最合适的交通路线;车内推荐系统会根据你的饮食习惯预测你可能会喜欢吃什么,并推荐沿途的早餐店;你的电子社交助理已经为你自动选择了你可能感兴趣的社交网信息。
离埃里克博士所说的2020年虽然还有3个月左右的时间,但是书中阐述的技术如“大数据交通技术”“个性化推荐系统”“人工智能语音助理”等已经逐渐实现,并被人们广泛应用。而这些技术都离不开“大数据”。
Volume大容量、Variety多样性、Value有价值、Velocity速度,4个V是业界普遍认定的大数据特点。那么大数据是如何改变我们的生活方式的呢?我们需要了解最重要的两个问题。即
“大数据最核心的价值是什么?”
“大数据最核心的技术是什么?”
大数据最核心的价值是什么?
首先,我们需要知道现代人类的衣食住行无外乎三大产业“农业”“工业”“服务业”,而所有产业都会从大数据的发展中受益。
农业:
大数据技术可以应用在如“土壤抽样分析”“气象统计监管”等与土壤,农作物,供应链相关的农业领域上,帮助第一产业的发展。如今国外已经有一些公司把大数据技术与农业进行落地,而在我国,农业大数据还仅仅是一个起步阶段。在未来,农民可以“知天而作”依靠大数据技术实现农作物产量翻倍,降低自然灾害对农产品的影响等愿景。工业:工业大数据是我国重点发展的一个方向,工业与信息化部门一直致力于我国工业大数据的发展。如果工业产业下的各个行业与大数据可以紧密结合,对人类的生活方式的改变将是巨大的。仅仅是电力系统的配电环节,如果可以做到基于海量用户用电特征数据分析,进而实现台区的负荷预测、用电调度、有序用电,将极大地优化我国电力资源的分配,实现可持续发展。服务业:
第三产业是与人们的生活贴合最紧密的一个产业。我们从幼年到老年,教育,交通,医疗,金融等行业或多或少都与我们生活相关,而这些行业与大数据更是密不可分。
医疗:
临床数据的采集分析,优化诊疗流程
可穿戴设备通过监测个人的行为如行走步数等改善我们的健康状况
通过大数据分析生成报告显示用户所在地区的流感活动。
交通:
智能化公交app“车来了”
路网监控优化重点城市交通压力
电子导航即时分析道路状况,为车主调整最佳路线
物流行业的车辆,路线,网点建设
娱乐:
网易云音乐“个性化推荐”
今日头条与抖音的新闻推荐,视频推荐
《纸牌屋》演员的筛选
电信:
通过大数据平台优化网络布局,提升用户体验
记录用户在Wifi网络中的地理位置等数据销售给广告客户。
银行:
风控模型的建立与优化
定制化金融服务等
由于某些客观原因,相对于第一产业和第二产业来说,第三产业凭借自身的优势,大多汇聚了当前最海量的数据以及大批的科研中坚力量。而无论在哪一产业,随着计算机处理能力的日益强大,你能获得的数据量越大,你能挖掘到的价值就越多。
大数据最核心的技术是什么?
分布式系统:
Hadoop:作为一个开源的框架,专为离线和大规模数据分析而设计。
数据采集:
Sqoop:用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库中的数据导入到Hadoop(中,也可以将Hadoop中的数据导入到关系型数据库中。
数据存储,预处理:
HBase:是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。
Hql:Hibernate Query Language的缩写,提供更加丰富灵活、更为强大的查询能力;HQL更接近SQL语句查询语法。
MapReduce:Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
数据分析:
Hive:核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。
Spark:拥有Hadoop MapReduce所具有的特点,它不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Pyspark:由python和spark组合使用,做前期数据处理速度快,还自带mllib可以实现一些基本的模型
建模,数据挖掘:
SparkMLlib:是Spark的机器学习(ML)库。其目标是使实际的机器学习可扩展和容易,同时包括相关的测试和数据生成器。Spark的设计初衷就是为了支持一些迭代的Job, 这正好符合很多机器学习算法的特点。
如今大数据分析的技术愈发成熟,相关的岗位也急速增加,薪水更是直线飙升,高达30K。以下图片源自某研究社:
薪资水平与行业需求
说明:曲线越向上代表市场需求量越大,就业情况越好。该数据由各地招聘网站统计而来,仅供参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08