
作者 | 王新港
出品 | CDA数据分析研究院
马云曾在卸任演讲的时候说过这样一段话:
“很多人还没搞清楚什么是PC互联网,移动互联网来了,我们还没搞清楚移动互联的时候,大数据时代又来了。”
而大数据专家埃里克·西格尔 博士曾在《大数据预测》一书中描绘了一个大数据时代下的一天:
2020年的一天,在你驱车前往公司的路上,导航系统通过预测交通流量,会自动帮你选择一条最合适的交通路线;车内推荐系统会根据你的饮食习惯预测你可能会喜欢吃什么,并推荐沿途的早餐店;你的电子社交助理已经为你自动选择了你可能感兴趣的社交网信息。
离埃里克博士所说的2020年虽然还有3个月左右的时间,但是书中阐述的技术如“大数据交通技术”“个性化推荐系统”“人工智能语音助理”等已经逐渐实现,并被人们广泛应用。而这些技术都离不开“大数据”。
Volume大容量、Variety多样性、Value有价值、Velocity速度,4个V是业界普遍认定的大数据特点。那么大数据是如何改变我们的生活方式的呢?我们需要了解最重要的两个问题。即
“大数据最核心的价值是什么?”
“大数据最核心的技术是什么?”
大数据最核心的价值是什么?
首先,我们需要知道现代人类的衣食住行无外乎三大产业“农业”“工业”“服务业”,而所有产业都会从大数据的发展中受益。
农业:
大数据技术可以应用在如“土壤抽样分析”“气象统计监管”等与土壤,农作物,供应链相关的农业领域上,帮助第一产业的发展。如今国外已经有一些公司把大数据技术与农业进行落地,而在我国,农业大数据还仅仅是一个起步阶段。在未来,农民可以“知天而作”依靠大数据技术实现农作物产量翻倍,降低自然灾害对农产品的影响等愿景。工业:工业大数据是我国重点发展的一个方向,工业与信息化部门一直致力于我国工业大数据的发展。如果工业产业下的各个行业与大数据可以紧密结合,对人类的生活方式的改变将是巨大的。仅仅是电力系统的配电环节,如果可以做到基于海量用户用电特征数据分析,进而实现台区的负荷预测、用电调度、有序用电,将极大地优化我国电力资源的分配,实现可持续发展。服务业:
第三产业是与人们的生活贴合最紧密的一个产业。我们从幼年到老年,教育,交通,医疗,金融等行业或多或少都与我们生活相关,而这些行业与大数据更是密不可分。
医疗:
临床数据的采集分析,优化诊疗流程
可穿戴设备通过监测个人的行为如行走步数等改善我们的健康状况
通过大数据分析生成报告显示用户所在地区的流感活动。
交通:
智能化公交app“车来了”
路网监控优化重点城市交通压力
电子导航即时分析道路状况,为车主调整最佳路线
物流行业的车辆,路线,网点建设
娱乐:
网易云音乐“个性化推荐”
今日头条与抖音的新闻推荐,视频推荐
《纸牌屋》演员的筛选
电信:
通过大数据平台优化网络布局,提升用户体验
记录用户在Wifi网络中的地理位置等数据销售给广告客户。
银行:
风控模型的建立与优化
定制化金融服务等
由于某些客观原因,相对于第一产业和第二产业来说,第三产业凭借自身的优势,大多汇聚了当前最海量的数据以及大批的科研中坚力量。而无论在哪一产业,随着计算机处理能力的日益强大,你能获得的数据量越大,你能挖掘到的价值就越多。
大数据最核心的技术是什么?
分布式系统:
Hadoop:作为一个开源的框架,专为离线和大规模数据分析而设计。
数据采集:
Sqoop:用来将关系型数据库和Hadoop中的数据进行相互转移的工具,可以将一个关系型数据库中的数据导入到Hadoop(中,也可以将Hadoop中的数据导入到关系型数据库中。
数据存储,预处理:
HBase:是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。
Hql:Hibernate Query Language的缩写,提供更加丰富灵活、更为强大的查询能力;HQL更接近SQL语句查询语法。
MapReduce:Hadoop的查询引擎,用于大规模数据集的并行计算,”Map(映射)”和”Reduce(归约)”,是它的主要思想。它极大的方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统中。
数据分析:
Hive:核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。
Spark:拥有Hadoop MapReduce所具有的特点,它不需要读取HDFS。Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。
Pyspark:由python和spark组合使用,做前期数据处理速度快,还自带mllib可以实现一些基本的模型
建模,数据挖掘:
SparkMLlib:是Spark的机器学习(ML)库。其目标是使实际的机器学习可扩展和容易,同时包括相关的测试和数据生成器。Spark的设计初衷就是为了支持一些迭代的Job, 这正好符合很多机器学习算法的特点。
如今大数据分析的技术愈发成熟,相关的岗位也急速增加,薪水更是直线飙升,高达30K。以下图片源自某研究社:
薪资水平与行业需求
说明:曲线越向上代表市场需求量越大,就业情况越好。该数据由各地招聘网站统计而来,仅供参考。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22