京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Destiny
来源 | 木东居士
0x00 前言
在之前分享的【数据图表的选择】三篇文章中,已经把不同类型数据图表的用法和适用场景做了一遍梳理。但是,在实际的业务场景中,如何根据拥有的数据集、想要展现的数据模式,去选择最合适的图表,需要不断的去实践和总结。
因此,今天这篇文章分享的内容,是来对比常见相似图表的差别和适用的数据集。
本篇将通过一些来源于实际业务场景的数据集实例,来进行不同的可视化方案对比,从而总结出根据可视化目的、数据集特征,去选择图表类型的一般套路。图表对比部分,会选择一些常见的,且比较容易混淆的图表类型来做对比,以「可视化目标→数据集准备→图表选择和对比→经验总结」的方式来行文。
0x01 常用图表对比
1)可视化目标
展示2019年上半年`销售额Top10的手机品牌`、`销售额Top10的手机型号`。
2)数据集准备
3)图形对比
4)总结
1)可视化目标
2)数据集准备
数据集1:
数据集2:
3)图形对比
4)总结
1)可视化目标
2)数据集准备
数据集1:票房收入(元)
数据集1:票房收入占比
3)图形对比
4)总结
4.折线图 VS 面积图
1)可视化目标
2)数据集准备
数据集1:全国承运包裹量
数据集2:中通、圆通、申通三家快递公司的承运包裹量
数据集3:全国及主流快递公司的承运量趋势
数据集4:主流快递公司的承运量占全国总承运量的趋势
3)图形对比
4)总结
5.堆叠面积图 VS 百分比堆叠面积图
1)可视化目标
说明:假设集团有且只有这三项业务,且总收入=电商业务收入+物流业务收入+云计算业务收入。
2)数据集准备
数据集1:总收入构成
数据集2:总收入贡献占比
3)图形对比
4)总结
6.堆叠面积图 VS 堆叠柱状图
1)可视化目标
2)数据集准备
数据集1:三大产业产值单位为【元】
数据集2:出货量单位为【部】
3)图形对比
4)总结
1)可视化目标
2)数据集准备
数据集1:
数据集2:
3)图形对比
4)总结
0xFF 总结
不知不觉发现写的内容有点多,为了方便大家更快的获取信息,将图表对比部分进行了精简,参考如下:
赘述一句:可视化之前,最重要的是弄清楚可视化的目的是什么,你期望展示或探索数据的什么规律。因为,这不仅决定了应该选择什么类型的图表,如何统计和组装你的数据集,也决定了可视化出来的结果是否能达到你的预期目标。
声明:以上图表数据纯属虚构,图形部分由Excel完成,部分由Sketch绘制。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05