
现如今,数据可视化由于数据分析的火热也变得火热起来,不过数据可视化并不是一个新技术,虽然说数据可视化相对数据分析来说比较简单,但是数据可视化却是一个十分重要的技术。在这篇文章中我们就给大家介绍一下关于数据可视化的现状以及数据可视化的发展趋势。
首先我们说一下国外的数据可视化的发展现状,其实在外国,数据可视化是一个成熟的技术,他们借助数据可视化技术,有很多的视觉化传播媒体使用图像化的方式进行传播信息,从而提升了自己的影响力。像一些知名的媒体比如卫报、芝加哥论坛报、BBC、ABC等,都是用数据可视化让自身影响力大大提高。其实随着电脑技术的成熟和搜索引擎技术的发展,政府信息公开化,众包模式的兴起,人们获取和解读数据的可能性大大提高,基于数据挖掘、理解数据基础上的数据新闻可视化,成为新闻叙事手段一个新的发展方向和突破。
那么国内的数据可视化的发展现状是什么呢?其实我国媒体利用数据可视化进行新闻报道处于刚刚起步阶段。这是因为在过去,我们借助于常用饼状图、柱状图、表格等形式来美化版面,通过数字加空镜头、画外音的形式宣扬某一领域的发展历程。这种报道方式陈旧,内容抽象化,语言机关化公文化,流于表面,难以让受众真正理解和思考数字的纵深意义,揭示事件发展的方向和趋势。所以说,要想改变这一状态,就需要不破不立。现在有很多的媒体都显示了我国数据可视化相比过去有所发展。
那么数据可视化的发展趋势与现存问题是什么呢?其实在未来数据可视化的发展历程中,数据的处理能力为核心,交互式可视化是新趋势。数据可视化新闻对新兴技术的依赖,暴露出传统媒体的短板。数据可视化使受众与媒体的关系发生根本变化,得以感受到传统报道难以揭示的现象和规律。当然需要注意的是,我们相信数据的力量但不能只靠数据,数据也可能存在误差,要避免数据偏差和数据失真,就要学会去除噪音数据的干扰和不断修正的方法。
加之数据可视化新闻制作周期长、人力成本高,与新闻的时效性存在一定冲突都有待于未来技术的进一步发展来提升报道质量,缩短报道时间。另外,尽管主流媒体和新兴媒体在新闻报道中做了大量数据可视化的尝试,但其发展仍然面临着受众关注度不高、数据源开发有限、相关专业人才匮乏等问题。所以说我国的数据可视化还有很长的路要走。
在这篇文章中我们给大家介绍了很多关于数据可视化的相关知识,具体包括国内外的数据可视化的发展现状以及数据可视化的发展趋势与现存问题,通过这些内容我们可以更好地理解数据可视化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29