
数据可视化是一个十分常见的技术,在数据分析、新闻媒体以及企业盘点都发挥着巨大的作用。由此可见数据可视化的应用可谓是横跨诸多学科、各行各业。但是大家是否知道数据可视化的应用都有哪些呢?下面我们就给大家简单介绍一下关于数据可视化的应用。
首先我们给大家介绍一下数据可视化在商业领域的应用,数据可视化在商业领域中的应用最常见的案例就是电商通过记录消费者个体浏览网站的兴趣爱好,结合数据挖掘、数据管理等应用技术,这就方便商家对消费者进行包括消费习性、地域环境、民族属性等方面的人口统计学特征分析,从而更好地制定营销策略,开发针对性产品。而在科学领域和社会领域,数据可视化的潜力有待进一步开发。这还有很长的路要走。
然后我们给大家介绍一下数据可视化在政治和社会领域中的应用,我们举一个例子,在美国在总统大选期间采用数据可视化新闻报道方式,有个英国的报纸分析官方公开的文件中相关数据,展开针对议员花销的调查性报道,推动了公共新闻的发展,充分发挥媒介的與论监督功能。正是因为这个报道,他获得了数据新闻奖,而全球编辑网络的数据新闻奖在业界非常有分量,这个报告以展现纽约十二年来新建建筑群、区域重新划分以及市内新建自行车道三大部分的改变为目的,揭示了在城市化进程中工薪阶层住宅、教育资源、就业机会等方面的深刻变化。
然后我们给大家介绍一下新媒体传播中数据可视化的研究应用。其实现在我们很多朋友的手机中有微博这个软件,以微博为例的新媒体作为新型实时信息分享的平台,在突发事件、群体事件的信息传播上,微博更是超越了传统媒体成为信息传播的主要渠道,产生了巨大影响。但是,各种新媒体社交平台的碎片化、强互动的传播方式以及病毒式的扩散速度,使得微博传播与传统传播方式差异越来越明显。所以利用可视化的工具,对微博数据进行可视化分析是目前理解社交媒体信息消费和微博传播模式最常用也是最实用的解决方案。基于对发布时间、转发数量、被转用户、转发度、转发路径等数据进行可视化处理,从而可以有效发现隐藏在信息传播网络中的特征与规律。但是因为这个效果,现在网上有不少的水军和假粉丝,这些水军和假粉丝的特征就是关注数和被关注数极少,但所发的微博数量却很多。水军和假粉丝对信息的传播有一定的误导作用。
我们在这篇文章中给大家介绍了很多关于数据可视化的案例,通过这篇文章中我们知道了数据可视化中的经典应用领域。由此我们可以发现数据可视化是一个十分重要的技术,在数据分析汇总中尤为重要。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29