cda

您的位置:首页 > 精彩阅读 > 如何用python做出超炫酷图表?

如何用python做出超炫酷图表?

2019-02-14

CDA数据分析研究院原创作品,转载需授权


小编总是被那些玩转数据、利用数据做出超炫酷图表的大佬深深折服,膝盖都不够给他们。进行数据可视化做出超炫图表的软件有很多,今天小编也用数据分析常用的python来演示一下如何做出精彩的数据可视化呈现。


导入相关的库和加载数据

import numpy as np 

import pandas as pd 

import seaborn as sns

import matplotlib.pyplot as plt

from datetime import date, timedelta, datetime


设置路径和加载数据

小编使用的是一个记录美国1908年到2009年飞机出事和死亡乘客记录的数据。

import os

os.chdir(r'D:\data\air_data')

Data=pd.read_csv('airplane.csv')

查看各列有没有缺失值:

Data.isnull().sum()


对缺失数据进行清洗:

Data['Time'] = Data['Time'].replace(np.nan, '00:00') 

Data['Time'] = Data['Time'].str.replace('c: ', '')

Data['Time'] = Data['Time'].str.replace('c:', '')

Data['Time'] = Data['Time'].str.replace('c', '')

Data['Time'] = Data['Time'].str.replace('12\'20', '12:20')

Data['Time'] = Data['Time'].str.replace('18.40', '18:40')

Data['Time'] = Data['Time'].str.replace('0943', '09:43')

Data['Time'] = Data['Time'].str.replace('22\'08', '22:08')

Data['Time'] = Data['Time'].str.replace('114:20', '00:00')

Data['Time'] = Data['Date'] + ' ' + Data['Time'] 

    return datetime.strptime(x, '%m/%d/%Y %H:%M')

Data['Time'] = Data['Time'].apply(todate) 

print('Date ranges from ' + str(Data.Time.min()) + ' to ' + str(Data.Time.max()))


Data.Operator = Data.Operator.str.upper() 

数据可视化

绘制1908年到2009年飞机出事频数的折线图,大概得出一个趋势变化。

Temp = Data.groupby(Data.Time.dt.year)[['Date']].count()

Temp = Temp.rename(columns={"Date": "Count"})


plt.figure(figsize=(12,6))

plt.style.use('bmh')

plt.plot(Temp.index, 'Count', data=Temp, color='blue', marker = ".", linewidth=1)

plt.xlabel('Year', fontsize=10)

plt.ylabel('Count', fontsize=10)

plt.title('Count of accidents by Year', loc='Center', fontsize=14)

plt.show()

我们把时间再精细化点,观察每月,每个星期,甚至每小时的事故,这次我们不看趋势,看量,绘制条形图。

import matplotlib.pylab as pl

import matplotlib.gridspec as gridspec


gs = gridspec.GridSpec(2, 2)

pl.figure(figsize=(15,10))

plt.style.use('seaborn-muted')

ax = pl.subplot(gs[0, :]) # row 0, col 0

sns.barplot(Data.groupby(Data.Time.dt.month)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.month)[['Date']].count(), color='lightskyblue', linewidth=2)

plt.xticks(Data.groupby(Data.Time.dt.month)[['Date']].count().index, ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])

plt.xlabel('Month', fontsize=10)

plt.ylabel('Count', fontsize=10)

plt.title('Count of accidents by Month', loc='Center', fontsize=14)


ax = pl.subplot(gs[1, 0])

sns.barplot(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.weekday)[['Date']].count(), color='lightskyblue', linewidth=2)

plt.xticks(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])

plt.xlabel('Day of Week', fontsize=10)

plt.ylabel('Count', fontsize=10)

plt.title('Count of accidents by Day of Week', loc='Center', fontsize=14)

ax = pl.subplot(gs[1, 1])

sns.barplot(Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count().index, 'Date', data=Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count(),color ='lightskyblue', linewidth=2)

plt.xlabel('Hour', fontsize=10)

plt.ylabel('Count', fontsize=10)

plt.title('Count of accidents by Hour', loc='Center', fontsize=14)

plt.tight_layout()

plt.show()

出事时,每年登机人数与死亡人数的对比图

Fatalities = Data.groupby(Data.Time.dt.year).sum()

Fatalities['Proportion'] = Fatalities['Fatalities'] / Fatalities['Aboard']


plt.figure(figsize=(15,6))

plt.subplot(1, 2, 1)

plt.fill_between(Fatalities.index, 'Aboard', data=Fatalities, color="skyblue", alpha=0.2)

plt.plot(Fatalities.index, 'Aboard', data=Fatalities, marker = ".", color="Slateblue", alpha=0.6, linewidth=1)

plt.fill_between(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", alpha=0.2)

plt.plot(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", marker = ".", alpha=0.6, linewidth=1)

plt.legend(fontsize=10)

plt.xlabel('Year', fontsize=10)

plt.ylabel('Amount of people', fontsize=10)

plt.title('Total number of people involved by Year', loc='Center', fontsize=14)

plt.subplot(1, 2, 2)

plt.plot(Fatalities.index, 'Proportion', data=Fatalities, marker = ".", color = 'red', linewidth=1)

plt.xlabel('Year', fontsize=10)

plt.ylabel('Ratio', fontsize=10)

plt.title('Fatalities / Total Ratio by Year', loc='Center', fontsize=14)

plt.tight_layout()

plt.show()


通过对比图我们可以看到死亡人数变得如此之高(即使在90年代后似乎有下降的趋势)。一些人提出了一个很好的观点,那就是图表并没有显示每年所有航班发生事故的比例。因此,1970-1990年在空中交通信号灯的历史上看起来是可怕的一年,死亡人数上升,但也有可能是乘飞机的总人数上升,而实际上比例下降了。


亲爱的筒子们,想了解更多用python玩转数据、掌握炫酷可视化技能那就赶紧关注CDA数据分析师微信公众号(cdacdacda)吧,点赞、转发、收藏,更多干货内容呈现给你噢。


完 谢谢观看

分享
收藏

OK