
CDA数据分析研究院原创作品,转载需授权
小编总是被那些玩转数据、利用数据做出超炫酷图表的大佬深深折服,膝盖都不够给他们。进行数据可视化做出超炫图表的软件有很多,今天小编也用数据分析常用的python来演示一下如何做出精彩的数据可视化呈现。
导入相关的库和加载数据
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date, timedelta, datetime
设置路径和加载数据
小编使用的是一个记录美国1908年到2009年飞机出事和死亡乘客记录的数据。
import os
os.chdir(r'D:\data\air_data')
Data=pd.read_csv('airplane.csv')
查看各列有没有缺失值:
Data.isnull().sum()
对缺失数据进行清洗:
Data['Time'] = Data['Time'].replace(np.nan, '00:00')
Data['Time'] = Data['Time'].str.replace('c: ', '')
Data['Time'] = Data['Time'].str.replace('c:', '')
Data['Time'] = Data['Time'].str.replace('c', '')
Data['Time'] = Data['Time'].str.replace('12\'20', '12:20')
Data['Time'] = Data['Time'].str.replace('18.40', '18:40')
Data['Time'] = Data['Time'].str.replace('0943', '09:43')
Data['Time'] = Data['Time'].str.replace('22\'08', '22:08')
Data['Time'] = Data['Time'].str.replace('114:20', '00:00')
Data['Time'] = Data['Date'] + ' ' + Data['Time']
return datetime.strptime(x, '%m/%d/%Y %H:%M')
Data['Time'] = Data['Time'].apply(todate)
print('Date ranges from ' + str(Data.Time.min()) + ' to ' + str(Data.Time.max()))
Data.Operator = Data.Operator.str.upper()
绘制1908年到2009年飞机出事频数的折线图,大概得出一个趋势变化。
Temp = Data.groupby(Data.Time.dt.year)[['Date']].count()
Temp = Temp.rename(columns={"Date": "Count"})
plt.figure(figsize=(12,6))
plt.style.use('bmh')
plt.plot(Temp.index, 'Count', data=Temp, color='blue', marker = ".", linewidth=1)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Year', loc='Center', fontsize=14)
plt.show()
我们把时间再精细化点,观察每月,每个星期,甚至每小时的事故,这次我们不看趋势,看量,绘制条形图。
import matplotlib.pylab as pl
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 2)
pl.figure(figsize=(15,10))
plt.style.use('seaborn-muted')
ax = pl.subplot(gs[0, :]) # row 0, col 0
sns.barplot(Data.groupby(Data.Time.dt.month)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.month)[['Date']].count(), color='lightskyblue', linewidth=2)
plt.xticks(Data.groupby(Data.Time.dt.month)[['Date']].count().index, ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
plt.xlabel('Month', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Month', loc='Center', fontsize=14)
ax = pl.subplot(gs[1, 0])
sns.barplot(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.weekday)[['Date']].count(), color='lightskyblue', linewidth=2)
plt.xticks(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])
plt.xlabel('Day of Week', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Day of Week', loc='Center', fontsize=14)
ax = pl.subplot(gs[1, 1])
sns.barplot(Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count().index, 'Date', data=Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count(),color ='lightskyblue', linewidth=2)
plt.xlabel('Hour', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Hour', loc='Center', fontsize=14)
plt.tight_layout()
plt.show()
出事时,每年登机人数与死亡人数的对比图
Fatalities = Data.groupby(Data.Time.dt.year).sum()
Fatalities['Proportion'] = Fatalities['Fatalities'] / Fatalities['Aboard']
plt.figure(figsize=(15,6))
plt.subplot(1, 2, 1)
plt.fill_between(Fatalities.index, 'Aboard', data=Fatalities, color="skyblue", alpha=0.2)
plt.plot(Fatalities.index, 'Aboard', data=Fatalities, marker = ".", color="Slateblue", alpha=0.6, linewidth=1)
plt.fill_between(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", alpha=0.2)
plt.plot(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", marker = ".", alpha=0.6, linewidth=1)
plt.legend(fontsize=10)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Amount of people', fontsize=10)
plt.title('Total number of people involved by Year', loc='Center', fontsize=14)
plt.subplot(1, 2, 2)
plt.plot(Fatalities.index, 'Proportion', data=Fatalities, marker = ".", color = 'red', linewidth=1)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Ratio', fontsize=10)
plt.title('Fatalities / Total Ratio by Year', loc='Center', fontsize=14)
plt.tight_layout()
plt.show()
通过对比图我们可以看到死亡人数变得如此之高(即使在90年代后似乎有下降的趋势)。一些人提出了一个很好的观点,那就是图表并没有显示每年所有航班发生事故的比例。因此,1970-1990年在空中交通信号灯的历史上看起来是可怕的一年,死亡人数上升,但也有可能是乘飞机的总人数上升,而实际上比例下降了。
亲爱的筒子们,想了解更多用python玩转数据、掌握炫酷可视化技能那就赶紧关注CDA数据分析师微信公众号(cdacdacda)吧,点赞、转发、收藏,更多干货内容呈现给你噢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29