京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析研究院原创作品,转载需授权
小编总是被那些玩转数据、利用数据做出超炫酷图表的大佬深深折服,膝盖都不够给他们。进行数据可视化做出超炫图表的软件有很多,今天小编也用数据分析常用的python来演示一下如何做出精彩的数据可视化呈现。
导入相关的库和加载数据
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from datetime import date, timedelta, datetime
设置路径和加载数据
小编使用的是一个记录美国1908年到2009年飞机出事和死亡乘客记录的数据。
import os
os.chdir(r'D:\data\air_data')
Data=pd.read_csv('airplane.csv')
查看各列有没有缺失值:
Data.isnull().sum()
对缺失数据进行清洗:
Data['Time'] = Data['Time'].replace(np.nan, '00:00')
Data['Time'] = Data['Time'].str.replace('c: ', '')
Data['Time'] = Data['Time'].str.replace('c:', '')
Data['Time'] = Data['Time'].str.replace('c', '')
Data['Time'] = Data['Time'].str.replace('12\'20', '12:20')
Data['Time'] = Data['Time'].str.replace('18.40', '18:40')
Data['Time'] = Data['Time'].str.replace('0943', '09:43')
Data['Time'] = Data['Time'].str.replace('22\'08', '22:08')
Data['Time'] = Data['Time'].str.replace('114:20', '00:00')
Data['Time'] = Data['Date'] + ' ' + Data['Time']
return datetime.strptime(x, '%m/%d/%Y %H:%M')
Data['Time'] = Data['Time'].apply(todate)
print('Date ranges from ' + str(Data.Time.min()) + ' to ' + str(Data.Time.max()))
Data.Operator = Data.Operator.str.upper()
绘制1908年到2009年飞机出事频数的折线图,大概得出一个趋势变化。
Temp = Data.groupby(Data.Time.dt.year)[['Date']].count()
Temp = Temp.rename(columns={"Date": "Count"})
plt.figure(figsize=(12,6))
plt.style.use('bmh')
plt.plot(Temp.index, 'Count', data=Temp, color='blue', marker = ".", linewidth=1)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Year', loc='Center', fontsize=14)
plt.show()
我们把时间再精细化点,观察每月,每个星期,甚至每小时的事故,这次我们不看趋势,看量,绘制条形图。
import matplotlib.pylab as pl
import matplotlib.gridspec as gridspec
gs = gridspec.GridSpec(2, 2)
pl.figure(figsize=(15,10))
plt.style.use('seaborn-muted')
ax = pl.subplot(gs[0, :]) # row 0, col 0
sns.barplot(Data.groupby(Data.Time.dt.month)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.month)[['Date']].count(), color='lightskyblue', linewidth=2)
plt.xticks(Data.groupby(Data.Time.dt.month)[['Date']].count().index, ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'])
plt.xlabel('Month', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Month', loc='Center', fontsize=14)
ax = pl.subplot(gs[1, 0])
sns.barplot(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, 'Date', data=Data.groupby(Data.Time.dt.weekday)[['Date']].count(), color='lightskyblue', linewidth=2)
plt.xticks(Data.groupby(Data.Time.dt.weekday)[['Date']].count().index, ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'])
plt.xlabel('Day of Week', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Day of Week', loc='Center', fontsize=14)
ax = pl.subplot(gs[1, 1])
sns.barplot(Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count().index, 'Date', data=Data[Data.Time.dt.hour != 0].groupby(Data.Time.dt.hour)[['Date']].count(),color ='lightskyblue', linewidth=2)
plt.xlabel('Hour', fontsize=10)
plt.ylabel('Count', fontsize=10)
plt.title('Count of accidents by Hour', loc='Center', fontsize=14)
plt.tight_layout()
plt.show()
出事时,每年登机人数与死亡人数的对比图
Fatalities = Data.groupby(Data.Time.dt.year).sum()
Fatalities['Proportion'] = Fatalities['Fatalities'] / Fatalities['Aboard']
plt.figure(figsize=(15,6))
plt.subplot(1, 2, 1)
plt.fill_between(Fatalities.index, 'Aboard', data=Fatalities, color="skyblue", alpha=0.2)
plt.plot(Fatalities.index, 'Aboard', data=Fatalities, marker = ".", color="Slateblue", alpha=0.6, linewidth=1)
plt.fill_between(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", alpha=0.2)
plt.plot(Fatalities.index, 'Fatalities', data=Fatalities, color="olive", marker = ".", alpha=0.6, linewidth=1)
plt.legend(fontsize=10)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Amount of people', fontsize=10)
plt.title('Total number of people involved by Year', loc='Center', fontsize=14)
plt.subplot(1, 2, 2)
plt.plot(Fatalities.index, 'Proportion', data=Fatalities, marker = ".", color = 'red', linewidth=1)
plt.xlabel('Year', fontsize=10)
plt.ylabel('Ratio', fontsize=10)
plt.title('Fatalities / Total Ratio by Year', loc='Center', fontsize=14)
plt.tight_layout()
plt.show()
通过对比图我们可以看到死亡人数变得如此之高(即使在90年代后似乎有下降的趋势)。一些人提出了一个很好的观点,那就是图表并没有显示每年所有航班发生事故的比例。因此,1970-1990年在空中交通信号灯的历史上看起来是可怕的一年,死亡人数上升,但也有可能是乘飞机的总人数上升,而实际上比例下降了。
亲爱的筒子们,想了解更多用python玩转数据、掌握炫酷可视化技能那就赶紧关注CDA数据分析师微信公众号(cdacdacda)吧,点赞、转发、收藏,更多干货内容呈现给你噢。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21