
1.什么是SPSS
SPSS是社会统计科学软件包的简称, 其官方全称为IBM SPSS Statistics。SPSS软件包最初由SPSS Inc.于1968年推出,于2009年被IBM收购,主要运用于各领域数据的管理和统计分析。作为世界社会科学数据分析的标准,SPSS操作操作界面极其友好,结果输出界面也很美观,同时还配备十分详细的用户手册。
1.1 SPSS的核心功能
1.2 数据编辑功能
可以通过SPSS的数据编辑功能,对数据进行增删改等处理,还可以根据需要对数据进行拆分、加权、排序、聚合等处理。
1.3 可视化功能
SPSS有很强大的绘图功能,可以根据模型自动输出描述性分析的统计图,反映不同变量间的内在关系;同时还可以由用户自定义统计图的基本属性,使数据分析报告更加美观。其中,基本图包括条形图、扇形图、饼图、柱状图、箱线图、直方图、P-P图、Q-Q图等。而它的交互图更加美观,包括条形交互图、带状交互图、箱形交互图、散点交互图等不同风格的2D及3D图。
1.4 表格编辑功能
用户可以使用SPSS绘制不同风格的表格,同时表格可以在查看器中编辑,也可以在专门的编辑窗口编辑。
1.5 联接其他软件
SPSS可以打开多种类型的数据文件, 其中包括Excel、Access、DaBase、文本编辑器、Lotus 1-2-3等等,同时用户还可以将图片保存为不同的图片格式。
1.6 统计功能
CDA数据分析师认为SPSS统计功能是进行数据分析要重点掌握的模块,通过此功能可以完成绝大部分数理统计模型分析,其中包括:回归分析、列联表分析、聚类分析、因子分析、相关分析、对应分析、时间序列分析、判别分析等。
2.如何用SPSS进行数据分析
首先,要了解数据分析的一般流程是什么?
CDA数据分析师将一个完整的数据分析项目分为以下五个流程:
2.1 数据获取
外部数据主要有三种获取方式,一种是获取国内一些网站上公开的数据资料,例如国家统计局;一种是通过爬虫等工具获取网站上的数据。还有一种是通过企业内部的数据库,SPSS有丰富的数据库接口,可以便捷地从数据库中读取数据。
2.2 数据存储
对于数据量不大的项目,可以使用excel来处理数据,但对于数据量过万的项目,使用数据库来存储与管理会更高效便捷。SPSS也有自己的用作数据储存的数据格式,sav文件。用户可以将经过SPSS处理的数据保存为sav格式,同时也可以非常方便地将sav文件转换为其他数据格式文件。
2.3 数据预处理
数据预处理也称数据清洗。大多数情况下,我们拿到手的数据是格式不一致,存在异常值、缺失值等问题的,而不同项目数据预处理步骤的方法也不一样。CDA数据分析师认为数据分析有80%的工作都在处理数据,可见数据预处理在数据分析的重要性。
2.4 建模与分析
这一阶段首先要清楚数据的结构,结合项目需求来选取模型。
常见的数据挖掘模型有:
2.5 可视化分析
数据分析最后一步是撰写数据分析报告,一般包括数据可视化分析。
其次,掌握了数据分析的一般流程后,便要以SPSS为工具,根据以下流程对一个完整项目进行以下细分并掌握:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01