京公网安备 11010802034615号
经营许可证编号:京B2-20210330
1.什么是SPSS
SPSS是社会统计科学软件包的简称, 其官方全称为IBM SPSS Statistics。SPSS软件包最初由SPSS Inc.于1968年推出,于2009年被IBM收购,主要运用于各领域数据的管理和统计分析。作为世界社会科学数据分析的标准,SPSS操作操作界面极其友好,结果输出界面也很美观,同时还配备十分详细的用户手册。
1.1 SPSS的核心功能
1.2 数据编辑功能
可以通过SPSS的数据编辑功能,对数据进行增删改等处理,还可以根据需要对数据进行拆分、加权、排序、聚合等处理。
1.3 可视化功能
SPSS有很强大的绘图功能,可以根据模型自动输出描述性分析的统计图,反映不同变量间的内在关系;同时还可以由用户自定义统计图的基本属性,使数据分析报告更加美观。其中,基本图包括条形图、扇形图、饼图、柱状图、箱线图、直方图、P-P图、Q-Q图等。而它的交互图更加美观,包括条形交互图、带状交互图、箱形交互图、散点交互图等不同风格的2D及3D图。
1.4 表格编辑功能
用户可以使用SPSS绘制不同风格的表格,同时表格可以在查看器中编辑,也可以在专门的编辑窗口编辑。
1.5 联接其他软件
SPSS可以打开多种类型的数据文件, 其中包括Excel、Access、DaBase、文本编辑器、Lotus 1-2-3等等,同时用户还可以将图片保存为不同的图片格式。
1.6 统计功能
CDA数据分析师认为SPSS统计功能是进行数据分析要重点掌握的模块,通过此功能可以完成绝大部分数理统计模型分析,其中包括:回归分析、列联表分析、聚类分析、因子分析、相关分析、对应分析、时间序列分析、判别分析等。
2.如何用SPSS进行数据分析
首先,要了解数据分析的一般流程是什么?
CDA数据分析师将一个完整的数据分析项目分为以下五个流程:
2.1 数据获取
外部数据主要有三种获取方式,一种是获取国内一些网站上公开的数据资料,例如国家统计局;一种是通过爬虫等工具获取网站上的数据。还有一种是通过企业内部的数据库,SPSS有丰富的数据库接口,可以便捷地从数据库中读取数据。
2.2 数据存储
对于数据量不大的项目,可以使用excel来处理数据,但对于数据量过万的项目,使用数据库来存储与管理会更高效便捷。SPSS也有自己的用作数据储存的数据格式,sav文件。用户可以将经过SPSS处理的数据保存为sav格式,同时也可以非常方便地将sav文件转换为其他数据格式文件。
2.3 数据预处理
数据预处理也称数据清洗。大多数情况下,我们拿到手的数据是格式不一致,存在异常值、缺失值等问题的,而不同项目数据预处理步骤的方法也不一样。CDA数据分析师认为数据分析有80%的工作都在处理数据,可见数据预处理在数据分析的重要性。
2.4 建模与分析
这一阶段首先要清楚数据的结构,结合项目需求来选取模型。
常见的数据挖掘模型有:
2.5 可视化分析
数据分析最后一步是撰写数据分析报告,一般包括数据可视化分析。
其次,掌握了数据分析的一般流程后,便要以SPSS为工具,根据以下流程对一个完整项目进行以下细分并掌握:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01