
作者 Kelly Peng
编译 Mika
本文为 CDA 数据分析师原创作品,转载需授权
中国小姐姐Kelly Peng在本文分享了她在数据科学求职过程中的心得和体会。
前言
一个月前,我作为数据科学家在Airbnb开始了我的新工作,能够进入Airbnb,获得自己心仪的工作我感到很幸运。我曾向Airbnb申请了四次,最后一次才收到了招聘人员的回复。
在本文中,我想跟大家分享以下,我的求职历程,希望能对你有所帮助,从而收获自己心仪的工作。
一些数据…
我的求职过程:
· 申请:475次
· 电话面试:50次
· 完成数据科学面试任务:9个
· 现场面试:8次
· 收到的Offer:2个
· 历时:6个月
可以从这些数据中看到,我并不是很有竞争力的求职者。否者我可能只申请几个职位就能收拿到不少offer。
是的,我并不出众,在面试中的表现也很不理想。但几个月前你是怎样的水平并不重要,重要的是你的成长和变化。
数据科学家之路
关于我的背景,我在中国获得了经济学学士学位,之后在美国伊利诺大学香槟分校获得了工商管理硕士学位。毕业后,我作为数据分析师工作了两年,7个月作为谷歌承包商,在创业公司工作了1年4个月。我的工作主要是编写SQL查询,构建仪表板以及提供数据驱动的建议。
当发现在工作中得不到预期的学习和发展后,我离职了,并参加了Galvanize Data Science Immerse的项目,这是在旧金山举行的为期12周的数据科学训练营。在申请训练营时,由于没有通过统计面试,我一共落选了4次,第5次才通过。
Galvanize教授的内容很注重Python和机器学习,并且需要一定的统计学基础。不出所料,我开始遇到了很多困难,因为我对编程和统计都不太了解。我别无选择,只能努力学习。我在参加训练营期间,我没有休息和玩乐,每天学习的时间都超过12小时。付出努力的成果也很明显,之后的课程我也更加得心应手一些。
然而,当之后的求职中,我还是遇到了很多问题。我与真正的数据科学家间的差距非常大,即使我努力学习,为期12周的集训还是不够的。因此我不断的找工作,不断面试,不断失败,但我并没有放弃,每次我都能学习新的知识,变得更强。
到2018年3月,自从我辞去上一份工作以来,我已经失业了将近一年。我的账户里只剩下600美元,我不知道该如何付下个月的房租。更糟糕的是,我的签证也要到期了,如果我在2018年4月底之前找不到工作,我就必须离开美国。
幸运的是,经过多次的历练,我从不知道如何自我介绍,记不住Lasso和Ridge中的哪一个是L1,对编程算法一无所知,逐渐成长起来,并清楚自己要什么。
当我进入Airbnb的最后一轮面试时,我已经拿到了一家公司的offer,因此我一点都不紧张。那场面试我希望展现出自己最好的一面,不要留有遗憾。面试的结果也很理想,最终我收到了offer,那些努力和不眠之夜得到了回报。
建议
1.明确自己想要什么。设定目标,努力去实现,不要轻易满足。
2.培养成长心态,这很重要。不要说“我不擅长编程”,“我不擅长统计”。不要用“才能”来形容别人,并以此作为自己懒惰的借口。你需要的是以正确的方式学习,并多次练习。
3.记下你被问到的面试问题,特别你没答上来的的问题。不要烦同样的错误,不断学习和提升自我。
4.与其他人讨论你不懂的问题。我非常感谢Galvanize项目中同学和老师的帮助,每个人都乐于互相帮助对方。
5.参加当地的数据科学聚会,加入数据科学学习小组,与业内人士交流... 尽可能扩展自己的人脉网络,可能在意想不到的地方会开启机遇之门。
6.有时成功需要努力和运气。不要总是把自己的失败归咎于自己不好。
值得改进的地方
· 除非做好了充分的准备,否则不要在一开始就去面试心仪的企业。
在求职时,我一开始就去参加优步的面试,这个决定让我很后悔。当时我面试很糟糕,这也影响了我再参加优步的面试。许多人以顶尖科技公司作为自己的理想企业; 然而,这些公司很多都有严格的规定,如果你面试失败了,在6个月或1年内都不能再次参加该公司面试。因此,在面试这些公司前你需要做好充分的准备。
· 缩小求职的工作类型,明确哪些类型的工作不适合你,这将为你节省大量时间。
看到数据科学家的招聘广告,你就会知道该职业的技能范围有多广。许多数据科学家工作的侧重点各不相同,比如自然语言处理、计算机视觉、深度学习,或者A / B测试,产品分析等。确保哪种工作适合你这将节省大量时间。
就我而言,我会避开需要博士学位,深度学习,计算机视觉等知识的职位。
以下是我在求职过程中用到的资源。记住,可以选的资源特别多,你可以花费大量时间来搜集资料,请有有目的性的选择,并充分利用。
准备面试的资源
统计
· 可汗学院
很适合了解基本概念。
· 书籍
Practical Statistics for Data Scientists
非常实用,强烈推荐。
· Coursera
统计学课程,杜克大学(使用R语言)
概率问题
· brilliant.org
我在准备面试时购买了会员,这是Facebook面试指南中推荐的材料之一。
A / B测试
· Udacity :A / B测试课程,谷歌
· 微软的KDD论文和课件
在数据科学面试中经常会问到A / B测试,但是之前很少业内人士做过A / B测试。
· Exp平台上的课件和视频
· 企业科技博客,比如Airbnb数据科学博客
· Coursera
机器学习课程,斯坦福大学,吴恩达主讲
· 书籍
An Introduction to Statistical Learning: with Applications in R
我们在Galvanize使用的教科书之一
· 书籍
Machine Learning in Action
Galvanize使用的另一本教科书
· Coursera:
Applied Data Science with Python Specialization ,密歇根大学
基本编程算法
· HackerRank
https://www.hackerrank.com/
入门级
· LeetCode:
https://leetcod
· 书籍
Cracking the Coding Interview: 189 Programming Questions and Solutions (使用Java)
Python数据操作(Pandas,Numpy)
· Datacamp
提示:通过完成公司面试时给出的挑战,我极大地提高了Python数据操作。实践是最好的学习方式。
R
· 我很少用到R语言,在面试中你可以使用R语言或Python。
· Mode Analytics SQL Tutorial
我能够熟练使用SQL,但每次SQL面试前我会回顾这个教程,特别是高级部分。
产品意识/业务
· 书籍
Case in point
Cracking the PM interview
Decode and conquer
一般面试问题
· Lynda Raynier的Youtube频道
对一般的面试
· 在技术面试前收集Glassdoor公司的面试问。
结语
求职只是我们人生旅程的一部分。但是,从长远来看,在求职过程中我们展现的勇气、热情和毅力将让我们终身受益。
我很喜欢下面这段文字,希望也能激励你:
“永远不要让别人告诉你,你做不了什么。如果你有梦想,就去捍卫它。那些一事无成的人想告诉你你也成不了大器。如果你有理想的话,就要努力去实现。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15