
前谷歌软件工程师YK Sugi分享了他是如何通过六个步骤,顺利开启了自己的数据科学职业生涯。
大家好,有很多人问我如何获得谷歌的软件工程师工作,在本文中我将分享我是怎么做的。
用相同的方法,你也可以在谷歌、亚马逊、微软、Facebook等顶尖科技公司获得软件工程师的工作。
在以上公司顺利求职共需要6个步骤,此外我还将讨论以下内容:
好的,我们开始吧!
第1步:学习编程
这是成为软件工程师所需的最低要求。
为此,我建议你使用Codecademy和freeCodeCamp等交互式网站。在这些网站上你可以学习大多数编程基础知识,SoloLearn也是不错的选择。
之后,我会使用视频教程来学习更深入的知识。我推荐YouTube,Pluralsight,Lynda.com和Udemy等网站。在这些网站上,你能够找到以下主题的教程:
取决于你的兴趣。
但是等一下,我应该先学习哪种编程语言呢?
我的简短回答是,选择JavaScript或Python,但这实际上取决于你的兴趣。我在之前的文章中有探讨过这个问题。
第2步:做些个人项目
在学习了一些编程教程之后,你应该通过构建一些个人项目来练习学到的知识。
为此,你应该找到你感兴趣的东西。
例如,如果你喜欢摄影,那么你可以开发一个网站整理你所拍的照片。如果你对股票感兴趣,那么可以构建一个系统来分析股票图表。如果你喜欢解决问题,那么可以尝试参加编程比赛。
当处理项目时,首先要尽可能靠自己完成。然后,如果遇到困难,可以使用在线或离线资源获取其他人的帮助。例如,如果遇到与编程相关的问题,你可以在Stack Overflow对特定技术问题进行提问。
第3步:获得第一个编程工作或实习
一旦完成了一些个人项目,你就有机会获得第一份编程工作或实习机会。这样在与顶级科技公司面谈之前,你将有一些编程的经验。
你完全有可能在一家顶级科技公司获得第一份工作,但是这种几率比较小,你获得的第一份工作更可能是在一家不那么知名的公司。
**申请软件工程师工作的最佳方式**
除了在网上投简历,你还有其他的方法可以尝试。
这里我建议你使用LinkedIn和人脉网络。
在LinkedIn上,首先找到你感兴趣的公司的招聘人员。然后,你可以问他们你是否有资格获得你感兴趣的职位。如果你的资格还不够,你也应该问他们如何能更好地做准备。
还有Meetup这种人脉网络的网站,你可以直接与当地公司的工程师和招聘人员进行交流。
这还不是全部。
LinkedIn这种人脉网站对于中小型公司的职位很适用。但是,对于想应聘谷歌和Facebook等大型公司而言,效果就不那么好了。
对于这些大公司,我建议结合以下三种方法:
结合这些方法能够增加你获得大型公司面试的机会。
对于大型公司,LinkedIn上大公司招聘人员收到的消息太多了,因此效果不太好。
第4步:学习数据结构和算法
谷歌和微软等顶级科技公司在面试时,经常会问到关于数据结构和算法的问题。所以,如果你对这方面不太了解,那么你应该学习。
针对这方面的基础知识,我推荐我YouTube频道的数据结构和算法系列视频。
谷歌和微软等公司的编程面试很难,但可以有针对性的进行准备。
一旦你对数据结构和算法有了深入了解,我就会推荐以下三种资源用于练习:
在自己练习几周之后,你可以开始进行模拟面试。
**怎么做模拟面试**
与你的朋友一起练习,从我以上提到的资源中选问题互相提问。
解答每个问题,并对你的解决方案进行解释。
在练习时,除了面试者还要充当面试官的角色,从而揣摩面试官的想法。
进行约20次模拟面试,之后你对实际面试将有一定把握。
第6步:反复尝试
使用我以上提到的三种方法应聘顶级科技公司:
如果第一次没有成功,请不要泄气。在找到心仪的工作前必然会经历一些失败。
在我成为谷歌的软件工程师之前,我曾尝试了五次。
总结:
等等,真的那么简单吗?
是的,但是完成这六个步骤需要大量的时间和精力。
其他问题
问题1:我需要获得计算机科学学位吗?
不用,但是拥有计算机科学学位有很大帮助。如果你参加一个完善的计算机科学课程,当中包含了步骤1,2,3和4的大部分内容(学习编程,做个人项目,获得第一个编程工作或实习,以及学习数据结构和算法)。
如果没有计算机科学学位,你需要自学当中许多内容。
要注意,即使拥有CS学位,获得顶级科技公司的软件工程师工作也需要付出很多努力。
问题2:我是否需要毕业于麻省理工学院,斯坦福大学,卡内基梅隆大学等顶尖大学?
同样,并不需要。毕业于顶尖大学当然有些帮助,但这并不是必备条件。
谷歌人事业务部的高级副总裁Laszlo Bock也同意这一观点。
在他的书《 Work Rules!》中提到,比起来自麻省理工学院等顶尖学校但表现平庸的学生,谷歌更青睐来自普通院校但表现优异的学生。
我认为这是有道理的,如果你很聪明且专注,那么来自哪所学校并不重要。
问题3:我需要很高的GPA(绩点)吗?
不用。
较高的绩点在面试中有一定优势,但你拥有扎实的实践经验,且完成了有趣的项目更为重要。
事实上,根据《 Work Rules!》,谷歌过去常常注重面试者的绩点。然而之后他们发现,较高的绩点并不意味着出色的工作能力。因此谷歌不再强调面试者的绩点。
问题4:那我需要什么?
你所需要的是强大的编程能力和解决问题的能力,熟练掌握计算机科学的基础知识,以及在简历中展示出完成的项目和具备的经验。
根据我在文中提到的六个步骤,你就能做到。
问题5:怎么能写一篇好的简历呢?
你可以参考我在面试谷歌时用的简历。
简历的篇幅最好控制在一页,我的稍微有些长,但可以作为参考。
祝你好运!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29