京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析入门:初识数据埋点
计划将实际工作中最高频的与数据相关的一些工作经验以及技巧与大家做一个交流沟通,初步计划整体分6-8篇文章、每篇1-2周的频率由外到里,由浅入深,并伴随实际工作中案例系统性的分享。根据看官老爷的反应调整后面要写的内容,以及更新文章的速度。
埋点概述
数据埋点是数据产品经理、数据运营以及数据分析师,基于业务需求(例如:CPC点击付费广告中统计每一个广告位的点击次数),产品需求(例如:推荐系统中推荐商品的曝光次数以及点击的人数)对用户行为的每一个事件对应的位置进行开发埋点,并通过SDK上报埋点的数据结果,记录数据汇总后进行分析,推动产品优化或指导运营。
埋点分析,是网站分析的一种常用的数据采集方法。数据埋点分为初级、中级、高级三种方式。数据埋点主流部署的方式有:
私有化部署(即部署在自己公司的服务器上,如果期望提高数据安全性,或者定制化的埋点方案较多,则适合私有部署,并开发一套针对自己公司定制化的数据后台查询系统保证数据的安全性和精确性,缺点是成本较高)。
接入第三方服务,比如国内的某盟和国外的GA(Google Analytics)统计,在以后的文章中会单独介绍,此处不再展开。(优点是成本较低,部分基础服务免费,缺点是:数据会存在不安全的风险,另外一个就是只能进行通用的简单分析,无法定制化埋点方案)
此处只展开初级:在产品、服务转化关键点植入统计代码,据其独立ID确保数据采集不重复(如收藏按钮点击率);
主要的埋点事件分类:
点击事件:
点击事件,用户点击按钮即算点击事件,不管点击后有无结果;如下图红框标注所示,点击一次记一次。
曝光事件:
成功打开一次页面记一次,刷新页面一次记一次,加载下一页新页,加载一次记一次。home键切换到后台再进入页面,曝光事件不记;
页面停留时间事件:
表示一个用户在X页面的停留时长记为停留时长。例如:小明9:00访问了X网站首页,此时分析工具则开始为小明这个访问者记录1个Session(会话)。接着9:01小明又浏览了另外一个页面列表页,然后离开了网站(离开网站可以是通过关闭浏览器,或在地址栏键入一个不同的网址,或是点击了你网站上链接到其他网站的链接……)为了简单,我们把这个过程当做一个Session。
则最终小明在首页的页面停留时间:
(Time on Page,简称Tp)Tp(首页) = 9:01 – 9:00 = 1 分钟
When?什么时间做?
产品经理的需求来源众多,可能来自一线市场人员,可能来自身旁油腻的领导。可能来自用户反馈的一条吐槽…无论需求来自哪里,首先要搞清楚的就是这个需求涉及的问题:
在什么样的场景下?
面向哪些目标用户?
解决了哪些问题?
带来了什么价值?
梳理清楚问题后,拆分问题:
哪些是主要问题?
哪些是次要问题?
重不重要?
紧不紧急?
将每个问题拆解后下一步就是带着PRD文档找亲爱的数据分析师童鞋与产品经理汪一起沟通,解决以下问题:
每个问题应该怎么量化?
量化指标是什么?
怎么通过数据定义每个问题以及整个需求的成功与否?
有哪些辅助指标?
定义好数据指标后,此时则需要数据产品或者数据分析师定义埋点。
How?怎么定义埋点?
无规则不成方圆,良好的定义规范可以帮助埋点相关人员更好的维护,以及理解,极高的提升工作效率,降低推倒重来的风险,基于此分享一份埋点的定义规范帮助各位看官老爷以后维护自己产品的埋点。
使用此规范后,本汪一人就可以维护一个APP版本(包含点击事件、曝光事件、停留事件)累计1500多个埋点,井然有序,完全不会乱。
(怀念那些加班维护埋点跑数的日日夜夜,让我与看门大叔成了挚友,结下了深厚的友谊。咳咳,此处应该有掌声…)
埋点分类概述:
首先从事件属性这个维度上分为三份Excel(点击事件表、曝光事件表、停留事件表)
其次每一个事件表中新建三份子表(Sheet),以点击事件表为例拆分为:首页事件集合、列表页事件集合、详情页事件集合
每当APP发布新版本时,从上一个版本的埋点中做一份Copy,新版本中新增了哪些埋点,删除了哪些埋点?都用不同的颜色,或者时间标记进行标注说明。
真实环境中分类更为复杂,仅以上面例子说明分类思路,各位看官老爷可以根据业务需求做针对自己产品更合适的分类。
字段明细:
功能字段:
用于说明当前埋点是在哪个页面的哪个功能。例如:收藏功能,对应功能字段名:自定义为我的收藏
中文名字段:
用于描述X功能模块内X位置,例如起名叫:收藏功能-文章收藏
事件类型字段:
用于说明当前埋点是点击事件还是曝光事件还是其他
事件ID字段:
如果是自己公司开发的数据查询系统,则每一个埋点都对应一个事件ID,上线后用于拿着事件ID去后台取数使用。事件ID的命名规范:事件英文简写_哪一端的产品_产品名称简写_页面名称_模块名称_功能名称。
例如:点击事件_APP端_二手车_个人中心_收藏_文章收藏 对应事件ID== click_app_2sc_ Personal Center_ Collection_ Article Collection
如果是用的第三方统计工具:例如某盟,同理定义好事件ID,上线后去X盟后台,输入事件ID查询相应的数据。
当一个埋点对应不同类型的多种位置的埋点时,则需要命名当前埋点的key参数与value参数,一个key可以对应1个value或者多个value,但一个value不能对应多个key.只能对应唯一的一个key 例如:二手车信息网站有2个关键按钮,一个是砍价按钮,一个是拨打电话按钮,但是在多个频道中每个频道都有多个砍价按钮多个拨打电话按钮,在这样的场景下就可以设计2个KEY值:
key01=source用于标记当用户点击了一次按钮后是在哪个频道的页面点击的这个按钮X value01=X1,value2=X2用于标记不同位置同属性的按钮。
Key02=type用于标记用户是点的砍价还是点的拨打电话按钮,例如:01value用于标记砍价按钮,02value对应的拨打电话按钮。
记录规则字段:
定义什么情况下触发埋点,例如:在列表页点击一次记录一次
备注:
用于描述当前埋点什么时间新增?什么时间修改过?原因?什么时间被删除?谁删除的?等信息记录,此处好多看官可能以为写不写无所谓,但是为了信息的完整性和可追溯性最好每一次变动都要备注。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22