
数据分析是如何改变了我的职业轨迹
三月份刚来上海参加CDA的数据分析就业班培训时,我没想到这次选择将会改变我未来的职业轨迹。
其实数据分析或数据挖掘这一行真正火起来是从17年开始的,那个时候市场上这方面的人才还是比较紧缺的,但相应的岗位也比较少,关于这方面的学习社区也大多从17年开始活跃起来。到了18年,市场上各种数据分析的培训班已经如雨后春笋般地开设了。
考研失利后我一直在寻找新的方向,这次失利一度让我很沮丧,更让我思考是否还有必要再去这样坚持。经济学中机会成本这个概念我很熟悉,毕竟考的就是西方经济学。如今这个时代发展地很快,你必须要清楚现在整个就业市场的状况和未来几年的趋势,选错了行业会让人付出更大的代价。
我一直在从各种渠道上了解现在的就业市场,偶然的机会我从经管之家上了解到了CDA数据分析师。经管之家(原人大经济论坛),考经管类专业的学生大多都熟悉这个平台,我也觉得是比较靠谱的。
在经过多方对比并与家人商量后,我决定去上海脱产参加数据分析就业班,一方面是想出去散散心,摆脱失利后地失落感,另一方面也是真地想系统地学习数据分析,想在数据分析方向上开启我的职业生涯,而这个行业在我看来是比较有潜力的。
三个月的学习生活是非常充实而有挑战性的,给我们上课的老师大多是有相当多的教学经验的,而且线下班更能方便与老师面对面地交流,及时解决课堂上的疑难问题。课程设计的范围很广,从Excel、SQL、SPSS到Python、R这些应用的软件都会涉及到,另外还有统计学及数据挖掘算法这些偏理论的知识。
除了白天这几个小时的上课时间外,助教老师还让我们分成几个学习小组。小组成员们可以一起学习,一起监督。我们小组的人比较好学,大家都是白天上完课后晚上留下来自习到十点钟才走,基本上也是那栋楼最后走的一批人。到了周末的时候,我们几个同学组团去社区的图书馆继续学习,不断巩固知识。我们很清楚,现在多学一点,多拼一点,这是对自己的未来负责。大家都是成年人,都能看到做一件事的利弊。
学习这件事只有自己主动去学,去实践、去思考才能转化成自己的东西,才能提高自身的能力,老师不过是辅助的,帮你指点一下学习的方向,让我们少走弯路。而且一定不能有我报了班就一定能找到工作的想法,这一切都取决于你自己,你未来的道路是从现在一步步地走出来的。一旦从心理上能够全情投入,专心于学习专业知识,那一切阻碍都不是问题。
学习过程中可以加几个关于数据分析方面的优质群,多搜集一些资料,然后马上行动。另外,学习要有侧重点和主动意识,老师在课堂上讲述的肯定不是那么全面,你要在课下去找资料,去找项目。
Kaggle 上的数据分析入门项目可以尝试着去做,去学习一些大牛开源的kernels。知乎上也有很多人转行数据分析,有一些优质的专栏可以关注,通过学习别人的长处与总结的东西来不断完善自身的知识体系。这样就不会觉得没有方向和迷茫。你会更加坚定自己的信心,看看有这么多人也是转行的,大家都这么努力,我也不能落下。
三个月的培训过得很快,到了末期大家也都把注意力转向了就业上。学校给安排了就业老师来指导我们修改自身的简历,提高通过筛选的几率,还教授了面试的礼仪与技巧,提高通过面试的几率。除了在各大招聘网站上投简历外,学校的老师还提供了就业的推荐机会。
我也是比较幸运,通过老师的推荐获得了某互联网金融公司的面试机会,之后在面试的过程中发挥地还算可以,顺利入职到该公司。之后从事风险数据分析这个职位,达到了我的心里预期,我对公司的工作环境和工作内容也比较认可,可以说是功夫不负有心人吧。当然,进入公司后需要学习的东西也很多,包括一些没有接触过的技术和很多业务方面的知识。我现在也是在努力适应公司的节奏,继续学习提高自身的能力。
我一直相信天道酬勤,功不唐捐。选择数据分析这一行我不会后悔,也会更坚定地走下去,迎来我人生的下一个篇章。我也会感谢CDA能提供这样一个学习的平台,帮助更多人了解数据分析这一行,帮助更多人开启他们关于数据行业的职业生涯
掌握CDA考试第一手资讯:
扫描二维码,关注CDA考试中心服务号
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16