京公网安备 11010802034615号
经营许可证编号:京B2-20210330
工业大数据解读
一、什么是工业大数据
工业大数据我们用一个定义,用内涵来给它框的话是很困难的,因为它涉及到很多各种各样的数据,所以定义比较困难。但从外延角度来看,它是比较容易。所以大体上是3+3,第一个3是三个层面,企业,企业上面的供应链、产业链和生态链,然后在这上面的行业管理和宏观经济。每个企业都有三个过程,第一个过程是生产,第二个过程是使用,第三个过程是发展中的经营效益,所以3+3基本上工业大数据的脉络就圈起来了。所以最小的这个圈就是企业,一个企业从开始到生产线到设计,到工艺过程,到人,一直到管理、决策、市场、服务,向这样的环节在使用。我们还构成了我们是什么的第二个部分。
第二个是链,我们通常说的是供应链、产业链、生态线,其实这三个链之间也是很难一刀断开,所以我也是从一个概念来看。所以制造业也好、工业企业也好,整个过程是一个链环周,所以我们需要从链上去看。这个链就不仅是一个企业,企业是这个链环中的一个环节,更重要的是我们的政府机构、研究机构,需要把产业制造业前两环,而追求前两环的优化。所以我们看到了超越一个企业的生存、使用和发展需求的新工业数据。
最后最高的是行业和宏观调控。每一个行业在行业管理的时间都需要工业大数据,在工业行业又生存了很多企业,所以做好工业数据管理又需要这样一个链条,所以3+3构成了工业的外延,每一个环节,使用的和需求的中间是交集,这样才对我们工业大数据的发展提供了基础,才为我们发展提供了基础。
概念说完了,说的很浅,很简单。有四点主要的结论:首先是3+3加起来的组合,3+3加起来的组合就是工业大数据;第二是产生、使用和进一步发展的需求的工业大数据是不同的,是交集;第三进一步发展需求的大数据最大;最后一句话最重要,工业大数据,工业是主体。
二、工业大数据的作用和意义
同样是三个层面,三个由小到大的全面,再加上八个需求,我们来看一下工业大数据的作用和意义。
首先从最小的层面,工业大数据是为了一个企业的整个生产、经营、管理、创新各个环节里面能够为这个企业实现它的计划,实现它的战略目标服务。
(图示)这里有两张图,当我们讲工业大数据的时候,我们的数据能够支撑发展,我们的数据要能够和这两个商业模式、制造过程紧紧的咬合在一起。不下面这个图是一个大数据的分析,即使大的数据分析平台,我们也还是为了企业的生产、经营、创新、管理各个环节的需求出发。所以这是第一个层面。
第二个层面,从相应的各个链环来看,从供应链、产业链、生态链来看,不管是CSM的生产圈,还是一个特定产品制造过程的供应链,还是一个完整生产过程的分析,工业大数据都是为了它的优化,为了它的形成。对于一个企业来说,很少来决定一个供应链,更不能决定一个产业链的完善、优化。所以当我们讲供应链产业和生态链的时候,在这个链条下更需要政府管理部门的协调。在这个过程里面企业要什么样的数据?各个企业之间实现协同需要什么数据?政府的宏观调控需要什么数据?这就进入第三个层面。
第三个层面,政府的行业管理对于供应链、产业链、生态链、商业链、价值链有非常重要的作用,但是政府的宏观调控就超越了这样的链环本身,我们要对经济发展面临的重大问题作出回应,甚至回答制造业如何来应对这样的问题。所以从这个行业来看重要的是行业发展战略,而到宏观调控的时候,不但行业的发展战略,还要从整个经济发展去看,这些问题怎么解决?就需要信息,而我们在讲第三部分的时候,当前主要的问题是信息不够和信息质量不够。
简单总结一下,工业大数据不管是研究、产业还是服务,都是为了加快制造业转型升级,提高工业竞争力,不管是企业还是链环、还是宏观行业。这个目标一定要落实好,每一个企业、每一个链环和我们行业当中的宏观经济方面,每一个环节都要落实好。我们这个目标要落实到供应链全局优化、产业链和生态链的形成。
三、工业大数据推动制造业转型升级
包括存在的主要问题,针对问题建设好、利用好,要提出注重取得失效,最佳实践和工业相结合。
首先要知道问题,不知道问题怎么发展?声称环节是跑冒滴漏,不管是企业还是供应链、产业链、生态链还是行业管理和宏观经济。然后是低标准,低标准的结果,使生产线的数据到了ERP,到了管理信息系统。当然了宏观的现象更加严重。
第二,在利用节面临的问题,从自动化到管理、到链环,各个环节第一个是不足,第二个是质量不高。第三是各个环节协同存在制度、核算标准等大量障碍。其实我们今天互联网的产生,不是金融产生的数据只用于金融去。
第三,在发展需求环节,缺乏预见性,缺乏有效的规模型和工具,缺乏制度和标准规范。你要知道究竟要什么,如果你不知道跑冒滴漏你不知道,非标准你也不知道。
所以我们建设好应用好大数据首先把这三个问题解决,然后针对问题来解决。首先是建设,什么是建设?我记得三年前说过,我说把大数据完全可以看作探矿、采矿、炼矿、用矿,实际上探矿和采矿就是建设好信息,建设好信息从三个纬度四个方面,三个纬度首先是发现。然后才可以按照应用需求结合结合起来。第二要实现这个过程我们要有制度,要有标准,要实现系统之间的互操作。同时我们还要发现、收集、组织,来提升系统性、完整性、及时性、准确性。这是建设好、运用好。
利用好有三个方面或者三个层次,和若干个关键环节。由于时间关系就不再展开讨论了。
最后,今天大数据要特别注重取得实效,最佳实践。我们要特别注重实效,因为今天的大数据,每一个环节的形成都有它的实效,这件事情从开始做到做完以后效果究竟是什么?把这个事情放在最最重要的位置,有很多企业家,当你用大数据对你企业各个环节进行改善提升的时候,你首先第一条要把提高效率放在首位,这是关键,而且对于制造业,永远把利润率放在最重要的位置。当然,工业大数据直接用钱来算,有的环节是企业老板在管理上、在服务上提效,但是这个效果必须是可测量的,不管是定性的还是定量的,但是一定是能够评价的。
我们要注重理论的研究,注重方法、制度创新的研究。在这个过程中,我们确实需要对制造业发展的趋势、特征,工业大数据的内涵外延,工业大数据如何使得生存、利用和使用之间,能够实现各个环节无缝结合,使量协同发展,实现大数据制度创新,等等一系列的问题我们需要研究。所以至于怎么办有很多很多问题,不同企业、不同行业面对的是不同对象,在这里只是一概而论的表现提一下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16