京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术在电子政务领域的应用
随着科学技术在社会各领域的不断渗透, 为人们的生活带来了巨大改变, 其中, 以大数据技术为代表的现代电子信息技术的广泛使用, 将人们带入了“大数据时代”。本文以大数据技术在电子政务领域的应用为研究内容, 在分析大数据技术特征的基础上, 这一技术在电子政务领域的实际应用加以介绍, 从而使人们更加深入的了解大数据技术。
近年来, 我国在计算机网络技术研究领域取得了显著成绩, 大数据技术、云计算技术、物联网技术等在社会各领域得到了较为广泛的应用。在此过程中, 为提高政府部门办事效率, 以大数据技术为核心的电子政务系统应运而生, 并且, 融入了大数据技术的电子政务系统在数据的获取、处理、分析等方面的效率显著提高, 为政府相关工作的高效开展奠定了基础。
1、大数据技术的特征概述
相比较传统数据处理技术来说, 大数据技术的主要特征包括以下四个方面:
(1) 大数据技术涉及到的数据量极为庞大, 在计算机网络快速发展的今天, 网络上的数字信息呈现出几何指数增长的趋势, 经过一定时期的积累, 这一数据量将达到惊人的数量, 为此, 只有大数据技术才能够对此类规模的数据进行有效的处理。
(2) 大数据技术所涉及数据类型众多, 除常见的文本、声音、图像、音频等数据外, 还包括一些特殊的文件形式, 并且, 不同类型的文件形式其作用自然也就存在着明显的差异。
(3) 大数据技术有着较快的数据处理数度, 凭借分布式计算机技术的使用, 能够在最短的时间内完成一定规模数据的处理任务, 并且, 最终得到的结果是有效的。
(4) 大数据技术所处理的数据虽然数据密度较低, 但是, 当密度较低的数据被收拢在一起后, 通过科学的数据处理分析方法, 从零星的数据中寻找有用的信息, 并对该信息的价值进行深入挖掘。
2 、大数据技术的关键
所谓大数据, 是指在短时间通过网络嗅探的方式, 快速搜集各种类型的网络数据, 并在相关数据中获取有价值的信息。大数据技术的实现需要通过大规模并行处理数据库技术、数据挖掘技术、分布式数据库技术、云计算基础构架平台等技术, 为更好的研究大数据技术, 应对其关键技术进行深入分析。
2.1 大规模并行处理数据库技术
为保证大数据技术中庞大数据的存储与处理, 则需要利用大规模并行处理数据库技术对相关数据进行集群管理。这一技术能够以最快的速度对数据处理命令进行相应, 并具有较低的延迟读写速度, 并且, 在云计算平台的配合下, 大规模并行处理数据库的成本也相对较低, 在正常工作过程中, 能够实现多个副本故障检测与转移机制, 在长时间工作的状态下, 出现故障的几率较低。
2.2 分布式数据库技术
所谓分布式数据库技术, 则区别于云存储数据库的形式, 他是利用互联网的空间特性, 将物理空间相对独立的存储单元进行连接, 通过一定的算法进行逻辑上的统一, 形成具有超大规模的数据库, 并具有较高的数据处理能力和数据存储能力。
从信息安全的角度分析, 这种分布式的数据库技术能够实现对数据资源的有效保护, 即便出现大规模的计算机病毒事件, 基于分布式数据的存储优势, 相关病毒对部分计算机的影响, 并不能对全部计算机中的数据造成毁灭性的破坏。
2.3 分布式存储技术
在大数据技术的实际应用中, 为满足用户一定规模数据存储的需求, 则充分利用了分布式存储技术所具有的纵向、横向扩展的优势, 将数据进行分割后存储与多台服务器、存储设备上, 从而有效降低了单一存储器的数据存储压力, 并且, 这种分布式存储技术, 还实现了系统可用性、可靠性的提高, 以及保证数据存取的高速进行。
2.4 云计算技术
对于大数据技术来说, 为了实现对一定规模数据的收集、分析和处理的能力, 则充分利用了云计算技术所搭建的平台, 从而为大数据技术的应用奠定了坚实的硬件基础。基于传统存储技术在速度、空间上的有限性, 无法为大数据技术提供足够的支持, 云计算技术则将传统计算机的存储、运算功能转移至云端, 以一种更加高效的方式, 为大数据技术在众多领域的拓展提供可靠的技术平台。
3、大数据技术在电子政务领域的应用
基于大数据技术的诸多优势, 在电子商务领域, 大数据技术主要用于网站数据进行分析, 社会诚信系统的构建, 信息共享平台与电子政务系统等。
3.1 大数据技术支持下的政府网站大数据分析
为准确掌握网站的浏览情况, 大多数网站都会对用户的日常浏览情况进行数据分析, 相关分析要素包括用户访问的路径、不同网页的停留时间、浏览网页的具体时间等, 通过对以上要素的研究, 能够对用户需求、习惯进行准确分析, 并能够对后期网站缺陷的具体调整提供指导性意见。
以某政府网站为例, 由于网页设计不合理, 以至于在用户打开某一页面时, 长期处于等待状态, 如此一来, 用户对这一网页的实际浏览次数将为0。针对这一情况, 网站管理人员通过对某一周期内的网站浏览情况进行分析, 由于一定周期内浏览网站用户的数量较大, 且相关要素成倍增加, 所以, 在处理以上信息的过程中就用到了大数据技术。对于网页访问次数出入较大的数据, 则需要进行深入分析, 在排除网页的可链接性之后, 检查网页内的相关信息, 却保网页内信息的可靠、安全。
通过用户浏览网站后留下的大量信息, 网站一方可以将用户信息存入数据库中, 并利用大数据技术对相关信息进行分类, 以实现网站信息向用户的精准推送。并且, 经过大数据处理后的数据信息, 逐渐成为政府行政决策的重要依据, 并能够在一定程度上保证行政决策的有效性和科学性。
3.2 大数据技术支持下的信用平台建设
为更好的掌握居民信用信息, 建立以个人为单位的信用数据库, 则需要以大数据技术为依托, 收集相关部门所掌握的居民信用资料, 并通过大数据技术进行对比、整合, 进而得出准确的个人信用情况。例如, 在购房贷款过程中, 商业银行往往需要用户提供《个人征信档案》, 在《个人征信档案》中, 不仅包括用户的基本身份信息, 还包括用户在所有金融机构办理的各种信用卡情况, 以及是否存在不良信用记录等, 这些信息的存在, 就意味着政府机构与金融机构之间实现了以大数据技术为核心的信息共享, 通过对比用户身份信息, 将属于同一用户的信用信息进行整合, 并重新存储与数据库之中。
政府行为的信用平台建设, 旨在掌握用户的个人诚信资料, 并为基于个人行为的政府服务工作提供数据支撑, 打击社会范围内长期存在的老赖等现象。大数据技术支持下的信用平台建设, 能够实现社会范围内道德诚信体系的不断加强, 促进社会道德水平的提升。
3.3 大数据交换共享平台与电子政务
随着政府部门事务性工作的不断增加, 仅依靠人工对相关数据进行收集、分类、整合、处理等工作不仅效率低, 速度慢, 且容易出现人为性差错, 数据结果的人为性因素较大。在此情况下, 依托大数据技术在多元数据收集、处理方面的优势, 以及计算机网络技术下的信息共享平台建设, 能够帮助政府通过网络获取社会各领域的相关数据, 并对数据资源进行有效整合, 形成庞大的数据库资源。
然而, 对于数据库来说, 只有得到利用才能体现其价值, 在情况下, 政府部门就充分利用了大数据交换共享平台的优势, 建立以政府事物为中心的社会基础数据库, 为政府相关工作的开展提供横向、纵向信息的全方位共享。在区域间政府工作交流方面, 大数据共享交换平台能够突破传统政务工作的空间限制, 进而促进跨地区政府部门信息资源整合与交流下的业务开展。
为更好的发挥电子政务的优势, 在大数据交换共享平台的建设方面, 需要对这一平台的信息资源目录体系进行完善, 制定政府间统一的大数据交换共享平台使用标准, 规范政府在使用大数据交换共享平台的各种行为, 以实现对数据资源的合理、高效利用。所以, 大数据交换共享平台的使用, 不仅便于政府工作的开展, 也促进了社会管理工作有条不紊的展开, 社会环境的稳定得以实现。
3.4 电子政务决策系统中的大数据技术
在实际使用过程中, 大数据技术并不仅仅是简单的对多元数据的收集、整合、分析、处理, 对于大数据技术的使用方来说, 庞大的数据价值还在于能够辅助政府决策。
利用计算机软件技术, 通过对庞大数据中有关数据的筛选、分析, 经过计算机软件的处理之后, 能够得到更加准确的计算结果, 政府部门依据这一结果, 就可以完成一系列的政府决策, 从而实现了政府办事效率的快速提高。
例如, 在市政建设方面, 对于城市内部交通拥堵问题, 可以借助交通系统长期提供的大数据信息, 了解城市内交通拥堵的主要路段、时间, 以及在庞大数据信息的支持下, 通过建模的方式, 采取多种治堵方式, 并利用大数据技术对每一种方式的实际效果进行综合评估, 最终选择效果最好的治堵方式。
对于政府决策的客观性、准确性等, 使用大数据技术辅助决策有着极大的优势, 但是, 基于大数据技术缺乏人类情感因素的介入, 以至于相关决策并不能够完全突出“以人为本”的政府工作理念, 所以, 政府部门应慎重对待大数据技术下的电子政务决策, 根据相关内容的实际情况, 做出最佳的决策选择。
4、大数据技术在电子政务中应用的不足之处分析
通过对地方政府电子政务系统的实际使用情况调查研究后发现, 即便在我国电子信息技术得到快速发展的情况下, 大多数地区政府在电子政务系统建设方面依然存在不足, 即便是已经施行电子政务管理的地区, 政府部门对于大数据技术的实际应用却有着较为明显的不足, 以至于大数据技术的优势无法得到有效发挥。
4.1“数据孤岛”现象的存在
大数据技术的核心在于对数据信息的共享, 然而, 有地方政府对大数据技术的认识不足, 以至于在数据共享方面存在政策性的理解偏差, 使得以政府为核心的相关数据无法被其它行业所利用, 大数据技术的优势也就失去。例如, A省与B省协商开通省际公交专线, 然而, 为了更好的安排公交车的运行时间表, 则需要A、B两省之间的人员往来数据进行分析, 并能够预估公交线路的实际载客风险, 从而适当的调整公交车的运营次数和时间, 但是, 在实际操作过程中, A、B两省间的客流数据无法实现共享, 以至于在公交车的实际安排下依然无法解决道路拥堵的实际问题。
地方政府所体现出来的在大数据技术应用方面的这一问题, 是传统政务管理工作中各自为政思想的延续, 一旦数据无法实现共享, 也就造成了所谓的“数据孤岛。大数据共享的问题在于两个方面, 首先, 政府部门之间有着严格的管理秩序, 优势存在上下级关系的政府部门, 下级向上级申请差异数据库中的内容, 多无法得到上机政府部门的许可, 以至于大数据技术在电子政务领域的使用存在着明显的“数据孤岛”现象。
导致“数据孤岛”现象的原因还包括大数据技术的本身, 由于我国大数据技术的应用并未得到普及, 在电子政务领域也只是部分地区完成了大数据技术的初步使用。数据作为政府管理的稀缺资源, 以及从保密的角度分析, 相关数据并不能进行过度披露, 否则, 将造成社会性的事件。所以, 这也就不难解释除政府部门间数据信息的相对独立以外, 广大市民同样无法通过大数据技术支持下的电子政务平台获得真实的数据信息。在这一“数据孤岛”现象的影响下, 地方电子政务平台的实际效果也就有着明显的降低。
4.2 电子政务领域常见的数据资源“过剩”与“闲置”问题
单从地区政府发展的角度来看, 地区政府在大数据技术方面投入的多少, 能够直接反映出该地区经济发展的实际情况, 两者之间存在着显著的正相关关系。然而, 当地区政府在大数据技术方面的投入与实际数据需求偏低时, 也就出现了所谓的数据资源“过剩”的问题。不仅如此, 在大数据技术投入不足的情况下, 政府部门无法对社会中存在的大量数据加以利用时, 也就形成了另一种形式的数据资源“闲置”。
(1) 以南京地区为例, 作为我国南方较为重要的经济主体, 南京市政府在大数据技术与电子政务方面投入了大量人力、物力和财力, 经过近几年的发展, 已经形成了较为完备的电子政务平台, 在实际使用中也到了广大市民的欢迎。然而, 相对于南京的区域地位来说, 受上海的影响, 作为上海市的经济辐射范围, 南京市的发展受到了一定的影响, 经济中心明显向上海地区便宜, 为此, 基于大数据技术的电子政务平台所整合的数据, 也就无法在更大的空间中发挥其作用, 这就是数据资源“过剩”。
(2) 在我国西北、西南部分地区, 由于经济发展较为落后, 以至于在全国范围内进行大数据技术支持下的电子政务系统建设过程中, 无法进行大范围的电子政务系统建设。以贵州省为例, 大数据技术下电子政务系统依然停留在商业层面的应用, 对于其它领域的电子政务系统建设并未涉及, 因此造成了贵州省内相关数据信息无法全面获取, 这也就是资源“闲置”的直接表现。
5、关于大数据技术在电子政务领域应用的建议
针对当前大数据技术发展的实际情况, 以及电子政务作为信息化时代下政府事务性工作改革的重要内容, 有着较为积极的意义。因此, 为推动大数据技术在电子政务领域的中的应用, 则需要做到以下三个方面。
(1) 地方政府应结合大数据技术与电子政务的结合, 推动地区大数据技术产业的发展, 通过各种优惠政策, 吸引高新技术企业入驻, 建立以大数据技术为核心的产业发展模式, 从而带动地区经济发展。
(2) 提高政府方面对大数据技术的认识, 在社会发展过程中, 大数据技术的优势越发明显, 尤其是在传统事务性工作的处理方面, 借助专业的数据分析软件, 能够完成从数据的收集、整理、分类, 直至得出数据分析结果, 实现了政府办事效率的显著提高。如此一来, 大数据技术的优势得以体现, 政府方面对于大数据的认识进一步提高, 进而促进了大数据技术在电子政务领域的普及。
(3) 加快大数据技术相关硬件、软件的研发。目前, 大数据技术涉及到的硬件、软件成本较高, 导致了部分经济欠发达地区无法实现大数据技术支持下的电子政务系统的全面推广。以大数据技术使用较为广泛的数据中心机房来说, 由于要使用到高速计算机和服务器到等昂贵的信息设备, 对于缺乏条件的地方政府来说, 可以利用云计算技术, 通过网络服务器的模式, 解决这一问题。
总的来说, 大数据技术在电子政务领域的应用实现了我国政务处理的信息化改革, 对于我国现代化社会管理制度体系的建立打下了坚实的基础。并且, 通过大数据思维在政务领域的渗透, 有助于大数据技术的应用效率提高。
6、总结
尽管, 我国电子政务系统的建设时间并不长, 相关领域依然有待完善。随着大数据技术在电子政务领域的不断渗透, 基于多元数据收集、整合、分类、处理的大数据信息交换共享平台建设, 为政府各项事务的有效开展奠定了坚实的基础。然而, 由于技术与认识上的不足, 电子政务系统中的大数据技术应用仍然集中于纵向政务业务领域, 这并不符合当前社会发展的趋势。因此, 为推广以大数据技术的应用个, 则需要加快大数据技术支持下的电子政务系统的设计, 推动电子政务系统中大数据技术的应用, 打造“数字化政府”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15