京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA第八届认证考试数据报告发布
CDA数据分析师认证考试在每年的6月与12月最后一个周末进行,一年两次。第八届(2018年6月)CDA考试现已结束,本次考试在全国21所考试中心顺利进行,共完成LEVEL 1业务数据分析师,LEVEL 2建模分析师,LEVEL 2大数据分析师三门科目。经过简要数据统计分析,CDA 发布本次考试的通过率及考生数据报告:
CDA 第八届通过率:
解读:
本届考试通过率及成绩情况:
· LEVEL 1 通过率为64%(其中成绩A占比9%,成绩B占比24%,成绩C占比31%)。
· LEVEL 2 建模分析师通过率为51%(其中成绩A占比11%,成绩B占比14%,成绩C占比26%)
· LEVEL 2 大数据分析师通过率为49%(其中成绩A占比9%,成绩B占比17%,成绩C占比23%)。
较上一届(第七届)比较,LEVEL 1的通过率有所下降,LEVEL 2的通过率微上升。随着CDA认证的普及,考试内容的不断迭代和更新,越来越多的企业抢夺数据人才,作为行业人才选拔的参照标准,未来CDA考试的难度会有所加大,通过率趋势也会逐步下降。
CDA 第八届考生地区分布
解读:
此图是展示的本次考生的地区分布,其中北京、上海、广州的考生为TOP 3,西南地区(成都、重庆)的考生已超过了一些东部沿海城市,成都位居第四。数据分析的发展也逐渐深入到二三线城市,社会对数据分析师的需求也更加广阔。最新一届第九届考试加入了苏州和南宁两个考点,城市增加到23所。
CDA 第八届考生专业分布
解读:
根据考生的专业字段进行了整理分析,可以看出考生的专业分布比较分散,没有形成一边倒的情况,结合高校普遍缺乏数据相关专业的现状,可看出目前高校还无法培养出来专业的数据相关人才。考生里面,计算机专业占比最多,为15%,其次信息管理专业,占比12%,再是数学、统计学、应用科学,占比8%。来自于理工科专业的考生居多。
CDA 第八届考生工作年限情况
解读:
本次考试,考生具有工作经验的占比74%,无工作经验的占比26%。其中3年以上工作经验的考生占比最多,达到42%;工作2-3年的占比10%,1年以下工作经验的占比最少,为8%。此数据说明CDA认证更深入到具有多年工作经验的职场人士之中,工作经验越多的职场人士越需求CDA证书,其次是无工作的人士以此作为行业的敲门砖。
CDA 第八届考生岗位分布
解读:
此数据为综合了本届考试所有考生的岗位信息,进行了数据的整理和分类,删除了空缺值,得出了考生从业岗位的占比情况。可见数据分析岗位占比最多,从业的考生中超过了1/3的考生皆从事数据分析类岗位;管理类岗位其次,占比16%;工程师、程序员IT相关岗位随后,占比15%。之后为运营、产品、市场、销售等。基本证明了对于大多数还在数据类岗位的从业人员都急需一个专业能力的提升和认可,获得CDA证书也将是在自己现有职位往更高职位或平台的一个跳板。在IT岗的一些工程师欲获得CDA证书,转行从事数据岗位。而在管理、运营、产品、市场等岗位,也有一定的数据分析技能需求。
CDA 第八届考生 TOP 企业
解读:
以上是筛选了考生来自的所有企业单位,列出的TOP企业名单,包括外企、国企、私企、政府部门等。可看出这些500强企业,政府部门的员工也需要CDA技能,参与CDA认证考试,获得证书。也说明CDA持证人遍布在这些企业单位,接触着最前沿的数据技术。
综上
随着大数据和数据分析的普及,企业对数据人才的需求越来越理性,越来越明确,人才的竞争变得愈加激烈。以往来看,只要带点数据分析相关的技能或背景的人就可以称作数据分析师,且容易得到offer,但实际工作并不理想。因此企业期望能够得到一个鉴别人才的参照标准,为自己更好的筛选人才。
对于求职者来讲,现在社会对人才的定义更偏“T型”和“十字型”,社会对数据分析师的理解更深,要求更高,因此想要成为抢手的人才,更应该具备全面、系统的技能。于是越来越多专业的学生,在高校无法满足学得数据分析的情况下,获取CDA技能,选择从事数据相关职业;越来越多的职场人士在以往没有经过系统、专业训练的情况下,重新学习,考取CDA证书,甚至是世界500强企业的人士也渴望获得一个专业证书,为自己镀金。
因此,无论是企业还是人才,都期望有一个专业的参照标准,连接互通。CDA发展至今,也一直担任着企业和人才互相选择的桥梁角色,降低了交易成本,提高了沟通效率。同时CDA也提供着相应的系统培训、公开课,举办着俱乐部沙龙、行业峰会等活动,为社会培养并输送了更多的专业人才,推动着整个数据行业的良好发展。
更多考试介绍及备考福利请点击:CDA 认证考试中心官网
以上为第八届CDA数据分析师认证考试数据报告及总结,第九届认证考试现已开放报名,考试时间为2018年12月29日,唯一报名通道:www.cdaglobal.com
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16