
一:概念
决策树(Decision Tree)是一种简单但是广泛使用的分类器。通过训练数据构建决策树,可以高效的对未知的数据进行分类。决策数有两大优点:1)决策树模型可以读性好,具有描述性,有助于人工分析;2)效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。
看了一遍概念后,我们先从一个简单的案例开始,如下图我们样本:
对于上面的样本数据,根据不同特征值我们最后是选择是否约会,我们先自定义的一个决策树,决策树如下图所示:
对于上图中的决策树,有个疑问,就是为什么第一个选择是“长相”这个特征,我选择“收入”特征作为第一分类的标准可以嘛?下面我们就对构建决策树选择特征的问题进行讨论;在考虑之前我们要先了解一下相关的数学知识:
信息熵:熵代表信息的不确定性,信息的不确定性越大,熵越大;比如“明天太阳从东方升起”这一句话代表的信息我们可以认为为0;因为太阳从东方升起是个特定的规律,我们可以把这个事件的信息熵约等于0;说白了,信息熵和事件发生的概率成反比:数学上把信息熵定义如下:H(X)=H(P1,P2,…,Pn)=-∑P(xi)logP(xi)
互信息:指的是两个随机变量之间的关联程度,即给定一个随机变量后,另一个随机变量不确定性的削弱程度,因而互信息取值最小为0,意味着给定一个随机变量对确定一另一个随机变量没有关系,最大取值为随机变量的熵,意味着给定一个随机变量,能完全消除另一个随机变量的不确定性
现在我们就把信息熵运用到决策树特征选择上,对于选择哪个特征我们按照这个规则进行“哪个特征能使信息的确定性最大我们就选择哪个特征”;比如上图的案例中;
第一步:假设约会去或不去的的事件为Y,其信息熵为H(Y);
第二步:假设给定特征的条件下,其条件信息熵分别为H(Y|长相),H(Y|收入),H(Y|身高)
第三步:分别计算信息增益(互信息):G(Y,长相) = I(Y,长相) = H(Y)-H(Y|长相) 、G(Y,) = I(Y,长相) = H(Y)-H(Y|长相)等
第四部:选择信息增益最大的特征作为分类特征;因为增益信息大的特征意味着给定这个特征,能很大的消除去约会还是不约会的不确定性;
第五步:迭代选择特征即可;
按以上就解决了决策树的分类特征选择问题,上面的这种方法就是ID3方法,当然还是别的方法如 C4.5;等;
若决策树的度过深的话会出现过拟合现象,对于决策树的过拟合有二个方案:
1:剪枝-先剪枝和后剪纸(可以在构建决策树的时候通过指定深度,每个叶子的样本数来达到剪枝的作用)
2:随机森林 --构建大量的决策树组成森林来防止过拟合;虽然单个树可能存在过拟合,但通过广度的增加就会消除过拟合现象
三:随机森林
随机森林是一个最近比较火的算法,它有很多的优点:
在数据集上表现良好
在当前的很多数据集上,相对其他算法有着很大的优势
它能够处理很高维度(feature很多)的数据,并且不用做特征选择
在训练完后,它能够给出哪些feature比较重要
训练速度快
在训练过程中,能够检测到feature间的互相影响
容易做成并行化方法
实现比较简单
随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本为那一类。
上一段决策树代码:
<span style="font-size:18px;"># 花萼长度、花萼宽度,花瓣长度,花瓣宽度
iris_feature_E = 'sepal length', 'sepal width', 'petal length', 'petal width'
iris_feature = u'花萼长度', u'花萼宽度', u'花瓣长度', u'花瓣宽度'
iris_class = 'Iris-setosa', 'Iris-versicolor', 'Iris-virginica'
if __name__ == "__main__":
mpl.rcParams['font.sans-serif'] = [u'SimHei']
mpl.rcParams['axes.unicode_minus'] = False
path = '..\\8.Regression\\iris.data' # 数据文件路径
data = pd.read_csv(path, header=None)
x = data[range(4)]
y = pd.Categorical(data[4]).codes
# 为了可视化,仅使用前两列特征
x = x.iloc[:, :2]
x_train, x_test, y_train, y_test = train_test_split(x, y, train_size=0.7, random_state=1)
print y_test.shape
# 决策树参数估计
# min_samples_split = 10:如果该结点包含的样本数目大于10,则(有可能)对其分支
# min_samples_leaf = 10:若将某结点分支后,得到的每个子结点样本数目都大于10,则完成分支;否则,不进行分支
model = DecisionTreeClassifier(criterion='entropy')
model.fit(x_train, y_train)
y_test_hat = model.predict(x_test) # 测试数据
# 保存
# dot -Tpng my.dot -o my.png
# 1、输出
with open('iris.dot', 'w') as f:
tree.export_graphviz(model, out_file=f)
# 2、给定文件名
# tree.export_graphviz(model, out_file='iris1.dot')
# 3、输出为pdf格式
dot_data = tree.export_graphviz(model, out_file=None, feature_names=iris_feature_E, class_names=iris_class,
filled=True, rounded=True, special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
graph.write_pdf('iris.pdf')
f = open('iris.png', 'wb')
f.write(graph.create_png())
f.close()
# 画图
N, M = 50, 50 # 横纵各采样多少个值
x1_min, x2_min = x.min()
x1_max, x2_max = x.max()
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, M)
x1, x2 = np.meshgrid(t1, t2) # 生成网格采样点
x_show = np.stack((x1.flat, x2.flat), axis=1) # 测试点
print x_show.shape
# # 无意义,只是为了凑另外两个维度
# # 打开该注释前,确保注释掉x = x[:, :2]
# x3 = np.ones(x1.size) * np.average(x[:, 2])
# x4 = np.ones(x1.size) * np.average(x[:, 3])
# x_test = np.stack((x1.flat, x2.flat, x3, x4), axis=1) # 测试点
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_show_hat = model.predict(x_show) # 预测值
print y_show_hat.shape
print y_show_hat
y_show_hat = y_show_hat.reshape(x1.shape) # 使之与输入的形状相同
print y_show_hat
plt.figure(facecolor='w')
plt.pcolormesh(x1, x2, y_show_hat, cmap=cm_light) # 预测值的显示
plt.scatter(x_test[0], x_test[1], c=y_test.ravel(), edgecolors='k', s=150, zorder=10, cmap=cm_dark, marker='*') # 测试数据
plt.scatter(x[0], x[1], c=y.ravel(), edgecolors='k', s=40, cmap=cm_dark) # 全部数据
plt.xlabel(iris_feature[0], fontsize=15)
plt.ylabel(iris_feature[1], fontsize=15)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid(True)
plt.title(u'鸢尾花数据的决策树分类', fontsize=17)
plt.show()
</span>
以上就是决策树做分类,但决策树也可以用来做回归,不说直接上代码:
[python] view plain copy
<span style="font-size:18px;">if __name__ == "__main__":
N =100
x = np.random.rand(N) *6 -3
x.sort()
y = np.sin(x) + np.random.randn(N) *0.05
x = x.reshape(-1,1)
print x
dt = DecisionTreeRegressor(criterion='mse',max_depth=9)
dt.fit(x,y)
x_test = np.linspace(-3,3,50).reshape(-1,1)
y_hat = dt.predict(x_test)
plt.plot(x,y,'r*',ms =5,label='Actual')
plt.plot(x_test,y_hat,'g-',linewidth=2,label='predict')
plt.legend(loc ='upper left')
plt.grid()
plt.show()
#比较决策树的深度影响
depth =[2,4,6,8,10]
clr = 'rgbmy'
dtr = DecisionTreeRegressor(criterion='mse')
plt.plot(x,y,'ko',ms=6,label='Actual')
x_test = np.linspace(-3,3,50).reshape(-1,1)
for d,c in zip(depth,clr):
dtr.set_params(max_depth=d)
dtr.fit(x,y)
y_hat = dtr.predict(x_test)
plt.plot(x_test,y_hat,'-',color=c,linewidth =2,label='Depth=%d' % d)
plt.legend(loc='upper left')
plt.grid(b =True)
plt.show()</span>
不同深度对回归的 影响如下图:
下面上个随机森林代码
[python] view plain copy
mpl.rcParams['font.sans-serif'] = [u'SimHei'] # 黑体 FangSong/KaiTi
mpl.rcParams['axes.unicode_minus'] = False
path = 'iris.data' # 数据文件路径
data = pd.read_csv(path, header=None)
x_prime = data[range(4)]
y = pd.Categorical(data[4]).codes
feature_pairs = [[0, 1]]
plt.figure(figsize=(10,9),facecolor='#FFFFFF')
for i,pair in enumerate(feature_pairs):
x = x_prime[pair]
clf = RandomForestClassifier(n_estimators=200,criterion='entropy',max_depth=3)
clf.fit(x,y.ravel())
N, M =50,50
x1_min,x2_min = x.min()
x1_max,x2_max = x.max()
t1 = np.linspace(x1_min,x1_max, N)
t2 = np.linspace(x2_min,x2_max, M)
x1,x2 = np.meshgrid(t1,t2)
x_test = np.stack((x1.flat,x2.flat),axis =1)
y_hat = clf.predict(x)
y = y.reshape(-1)
c = np.count_nonzero(y_hat == y)
print '特征:',iris_feature[pair[0]],'+',iris_feature[pair[1]]
print '\t 预测正确数目:',c
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
y_hat = clf.predict(x_test)
y_hat = y_hat.reshape(x1.shape)
plt.pcolormesh(x1,x2,y_hat,cmap =cm_light)
plt.scatter(x[pair[0]],x[pair[1]],c=y,edgecolors='k',cmap=cm_dark)
plt.xlabel(iris_feature[pair[0]],fontsize=12)
plt.ylabel(iris_feature[pair[1]], fontsize=14)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.grid()
plt.tight_layout(2.5)
plt.subplots_adjust(top=0.92)
plt.suptitle(u'随机森林对鸢尾花数据的两特征组合的分类结果', fontsize=18)
plt.show()
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28