京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python基础教程之利用期物处理并发
抨击线程的往往是系统程序员,他们考虑的使用场景对一般的应用程序员来说,也许一生都不会遇到……应用程序员遇到的使用场景,99% 的情况下只需知道如何派生一堆独立的线程,然后用队列收集结果。
本文章记录了本人在学习Python基础之控制流程篇的重点知识及个人心得,打算入门Python的朋友们可以来一起学习并交流。
本文重点:
1、掌握异步编程的相关概念;
2、了解期物future的概念、意义和使用方法;
3、了解Python中的阻塞型I/O函数释放GIL的特点。
一、异步编程相关概念
阻塞:程序未得到所需计算资源时被挂起的状态。换句话说,程序在等待某个操作完成期间,自身无法继续干别的事情,则称该程序在该操作上是阻塞的。
并发:描述的是程序的组织结构。指程序要被设计成多个可独立执行的子任务。并发以利用有限的计算机资源使多个任务可以被实时或近实时执行为目的。
并行:指的是多任务同时执行的程序状态,以利用多核CPU加速完成多任务为目的。
异步:为完成某个任务,不同程序单元之间过程中无需通信协调,也能完成任务的方式。
不相关的程序单元之间可以是异步的。简言之,异步意味着无序。
异步编程:以进程、线程、协程、函数/方法作为执行任务的基本单位,结合回调,事件循环、信号量等机制,以提高整体执行效率和并发能力的编程方式。
二、期物
就下载国旗为目标实现的三个客户端中,两个HTTP并发客户端比依序下载的脚本性能高很多。
由此说明使用并发可以高效处理网络I/O。
期物(future)指一种对象,表示异步执行的操作。
期物对象:concurrent.futures.Future或asyncio.Future类的实例。
三大方法:
Executor.submit():创建期物。
concurrent.futures.as_completed():迭代运行结束的期物,返回一个迭代器。
Executor.map(): 处理参数不同的同一个可调用对象。
小结:Executor.submit()加futures.as_completed()的组合比Executor.map()更灵活,因为submit()能处理不同的可调用对象和参数。
concurrent.futures模块的主要特色是ThreadPoolExecutor和ProcessPoolExecutor类,这两个类实现的接口能分别在不同的线程或进程中执行可调用的对象。
注意:通常情况下自己不应该创建期物,而只能由并发框架(concurrent.futures或asyncio)实例化。
实例:concurrent.futures模块应用
from concurrent import futures
from flags import save_flag, get_flag, show, main
MAX_WORKERS = 20
def download_one(cc):
image = get_flag(cc)
show(cc)
save_flag(image, cc.lower() + '.gif')
return cc
def download_many(cc_list):
workers = min(MAX_WORKERS, len(cc_list))
with futures.ThreadPoolExecutor(workers) as executor:
res = executor.map(download_one, sorted(cc_list))
return len(list(res))
if __name__ == '__main__':
main(download_many)
三、阻塞性I/O与GIL
Python标准库中所有阻塞型I/O函数都会释放全局解释器锁(GIL),允许其他线程运行。
因此尽管有GIL,Python线程仍然适合在I/O密集型系统使用。
四、线程和多进程的替代方案
对CPU密集型工作来说,要启动多个进程,规避GIL。
创建多进程最简单的方式是使用futures.ProcessPoolExecutor类。
threading和multiprocessing模块:是Python中多线程和多进程并发的低层实现。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26