京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 Booking 当数据科学家是怎样一种体验
Nishikant是Booking公司的一名高级数据分析师,在本文中他分享了自己在Booking从数据科学家新手到大师的发展历程。
求职
在迪拜做了3年咨询类工作之后,我作为一名数据科学家加入了Booking 。从咨询转行到数据科学领域是我职业生涯中的重大转变,现在看来我很高兴当初做了这一选择。
在面试时,我就对Booking的感觉特别好。我有机会与数据科学家交谈,面试官的背景非常多样,其中一位拥有天文学的博士学位,另一位是自己创业公司的首席技术官。
同时Booking的伙食特别好,这也是我选择Booking的原因之一。
入职
我还记得入职的第一天,同事问我”你对你的屏幕还满意吗?”这让我很意外,因为我以前工作时只配备了一台笔记本电脑。Booking之后给我配备了一台Mac、两个大屏幕以及其他一些酷炫的设备。
入职后不久,我参与的第一个入职项目涉及到分析大量文本,我需要从中得出业务见解。以前我只有结构化数据方面的经验,因此我对这个新挑战感到兴奋。我希望提高自己文本数据的水平,但不久之后我就遇到困难了,那就是Booking庞大的数据规模。
Booking每24小时订出150万个房间,同时有数百万人访问网站,这意味着数据科学家所接触的数据规模相当大。还好公司有使用Spark进行分布式计算的内部培训。通过培训,如今我能够在多台机器上运行分析。
项目
我的第二个项目是为合作网站构建推荐引擎。以前我只做过标准回归和分类模型,这是我第一次接触到协同过滤和分解机。
由于数据规模,我不得不用PySpark进行稀疏分布矩阵。在编写代码之后,我们进行了A / B测试,看这样是否会对我们的业务带来积极影响。这也是我第一次接触A / B测试,但幸运的是公司配有完备的实验工具和基础设施,从而让这一过程并不困难。通过多次迭代,我们顺利处理了冷启动问题,并成功完成了该项目。
Booking的数据科学家在Analytics Fair上展示项目
接下来是大量的项目,每个项目都有不同的挑战,作为数据科学家我需要不断地学习。例如,其中一个项目需要我将业务问题表示为加权网络图,并进行相关分析; 在另一个项目中,我需要从简单的数据分析中得出有价值的见解。
就这样过了两年半,我目前是Booking的高级数据科学家。现在我致力于研究人工智能产品的机器翻译,并通过部署神经网络和深度学习解决方案构建全面的生产系统。
团队构成
下面我打算介绍下Booking的团队构成。
我们采用“嵌入式”结构,数据科学家与业务紧密相连。我参与的团队中有开发人员、数据科学家、产品负责人和其他专家。团队结合所有的力量,将相关概念实施到具体产品。在日常运营中,我们遵循一定的准则:每日会议、回顾、待办事项、团队目标、KPI和OKR(目标和关键结果)。再加上每两周一次的会议,能够让团队稳步发展,并尽快学习。
正是与业务的紧密联系,Booking的数据科学家都有很强的沟通能力和商业意识,同时还有很强的专业技能。这些都是我们在面试求职者时要测试的基本技能。
出色的数据科学家
Booking共有120 多名数据科学家,而且社区在日益壮大。每位数据科学家都有不同的背景和技能强项。
有些人是数据科学新手,有些人则有丰富的工作经验; 有些人是贝叶斯派,有些人是频率学派; 有些人喜欢用R语言,有些人更喜欢用Python; 有些人喜欢用Vowpal Wabbit,有些人则喜欢使用Spark和H2O进行分布式计算。
这种多样性可以让大家彼此学习和进步。我们每周都会举行相关的聚会和会谈,当中我们会谈论最新的行业动向和研究论文,并结合解决Booking的实际问题。此外,公司还会定期举办相关技术培训,包括A / B测试、Git、Hive、Python、R、Spark、H2O、TensorFlow等内容。
Booking数据科学社区每周会谈
在我看来,在Booking工作最大的财富就是出色的数据科学社区,在当中我每天都能学习新事物,并且十分开心。
面对的挑战
同时我们也有面对一些挑战。
首先,由于我们的数据科学社区发展得非常快,这也为分享知识带来了难度。为了解决这个问题,我们尝试了很多方法,比如针对专业的话题(比如自然语言处理),黑客马拉松等方面展开讨论,从而更好地分享知识。
让数据科学家参与业务也有其不利之处。有时在日常工作中我们会缺少同事的相关反馈。为了解决这个问题,我们鼓励大家分享各自的成果,并与同事一起讨论他们的最新项目。同时我们也为新员工提供导师计划。
尽管我们已多次为数据科学社区做出贡献,但我们也希望将成果分享给外部。我们目前正在制定一些指导方案。
Booking的数据科学家们在船上聚会
最后我想说,在Booking当数据科学家非常愉快,而且从来不会缺少机遇与挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27