京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在 Booking 当数据科学家是怎样一种体验
Nishikant是Booking公司的一名高级数据分析师,在本文中他分享了自己在Booking从数据科学家新手到大师的发展历程。
求职
在迪拜做了3年咨询类工作之后,我作为一名数据科学家加入了Booking 。从咨询转行到数据科学领域是我职业生涯中的重大转变,现在看来我很高兴当初做了这一选择。
在面试时,我就对Booking的感觉特别好。我有机会与数据科学家交谈,面试官的背景非常多样,其中一位拥有天文学的博士学位,另一位是自己创业公司的首席技术官。
同时Booking的伙食特别好,这也是我选择Booking的原因之一。
入职
我还记得入职的第一天,同事问我”你对你的屏幕还满意吗?”这让我很意外,因为我以前工作时只配备了一台笔记本电脑。Booking之后给我配备了一台Mac、两个大屏幕以及其他一些酷炫的设备。
入职后不久,我参与的第一个入职项目涉及到分析大量文本,我需要从中得出业务见解。以前我只有结构化数据方面的经验,因此我对这个新挑战感到兴奋。我希望提高自己文本数据的水平,但不久之后我就遇到困难了,那就是Booking庞大的数据规模。
Booking每24小时订出150万个房间,同时有数百万人访问网站,这意味着数据科学家所接触的数据规模相当大。还好公司有使用Spark进行分布式计算的内部培训。通过培训,如今我能够在多台机器上运行分析。
项目
我的第二个项目是为合作网站构建推荐引擎。以前我只做过标准回归和分类模型,这是我第一次接触到协同过滤和分解机。
由于数据规模,我不得不用PySpark进行稀疏分布矩阵。在编写代码之后,我们进行了A / B测试,看这样是否会对我们的业务带来积极影响。这也是我第一次接触A / B测试,但幸运的是公司配有完备的实验工具和基础设施,从而让这一过程并不困难。通过多次迭代,我们顺利处理了冷启动问题,并成功完成了该项目。
Booking的数据科学家在Analytics Fair上展示项目
接下来是大量的项目,每个项目都有不同的挑战,作为数据科学家我需要不断地学习。例如,其中一个项目需要我将业务问题表示为加权网络图,并进行相关分析; 在另一个项目中,我需要从简单的数据分析中得出有价值的见解。
就这样过了两年半,我目前是Booking的高级数据科学家。现在我致力于研究人工智能产品的机器翻译,并通过部署神经网络和深度学习解决方案构建全面的生产系统。
团队构成
下面我打算介绍下Booking的团队构成。
我们采用“嵌入式”结构,数据科学家与业务紧密相连。我参与的团队中有开发人员、数据科学家、产品负责人和其他专家。团队结合所有的力量,将相关概念实施到具体产品。在日常运营中,我们遵循一定的准则:每日会议、回顾、待办事项、团队目标、KPI和OKR(目标和关键结果)。再加上每两周一次的会议,能够让团队稳步发展,并尽快学习。
正是与业务的紧密联系,Booking的数据科学家都有很强的沟通能力和商业意识,同时还有很强的专业技能。这些都是我们在面试求职者时要测试的基本技能。
出色的数据科学家
Booking共有120 多名数据科学家,而且社区在日益壮大。每位数据科学家都有不同的背景和技能强项。
有些人是数据科学新手,有些人则有丰富的工作经验; 有些人是贝叶斯派,有些人是频率学派; 有些人喜欢用R语言,有些人更喜欢用Python; 有些人喜欢用Vowpal Wabbit,有些人则喜欢使用Spark和H2O进行分布式计算。
这种多样性可以让大家彼此学习和进步。我们每周都会举行相关的聚会和会谈,当中我们会谈论最新的行业动向和研究论文,并结合解决Booking的实际问题。此外,公司还会定期举办相关技术培训,包括A / B测试、Git、Hive、Python、R、Spark、H2O、TensorFlow等内容。
Booking数据科学社区每周会谈
在我看来,在Booking工作最大的财富就是出色的数据科学社区,在当中我每天都能学习新事物,并且十分开心。
面对的挑战
同时我们也有面对一些挑战。
首先,由于我们的数据科学社区发展得非常快,这也为分享知识带来了难度。为了解决这个问题,我们尝试了很多方法,比如针对专业的话题(比如自然语言处理),黑客马拉松等方面展开讨论,从而更好地分享知识。
让数据科学家参与业务也有其不利之处。有时在日常工作中我们会缺少同事的相关反馈。为了解决这个问题,我们鼓励大家分享各自的成果,并与同事一起讨论他们的最新项目。同时我们也为新员工提供导师计划。
尽管我们已多次为数据科学社区做出贡献,但我们也希望将成果分享给外部。我们目前正在制定一些指导方案。
Booking的数据科学家们在船上聚会
最后我想说,在Booking当数据科学家非常愉快,而且从来不会缺少机遇与挑战。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23