
如何衡量多元线性回归模型优劣
最近再做一些多元回归分析方面的分析,但对于得出的回归模型的好坏不知道如何才判断,于是查找了一下相关的教材书籍,找到了张文彤老师写的《SPSS统计分析高级教程》这本书,里面对于回归模型的优劣评价给出来了几点看法,我在此做了摘录分享一下。
当供建立回归模型的自变量有p 个时,仅考虑各因素的主效应,可以建立2^P 个模型(包括仅含常数项的模型)。如果来衡量这些模型的好坏?常用有以下几种标准:
1.复相关系数R
复相关系数(Multiple Correlation Coefficient) 又称多元相关系数,表示模型中所有自变量xi间与反应变量y之间线性回归关系的密切程度大小。实际上它是Yi 与其估计值的简单线性相关系数,即Pearson 相关系数。但其取值范围为(0 ,1),没有负值。R 值越大,说明线性回归关系越密切。但R值直大至多少才算足够好?不同学科的研究其判断标准也不一样。如社会科学研究学者可能认为R >0.4 己经足够好了(想想对股价的预测吧) ,而医学研究学者认为R =0.8 仍嫌偏小,这可能是因为社会科学研究中存在较多的对反应变量确有影响却无法进行测量的变量,当然也就无法对其进行统计分析。此外,用复相关系数评价多元线性回归模型优劣时存在不足,即使向模型中增加的变量没有统计学意义, R 值仍会增大。
2. 决定系数R2
模型的决定系数(Determinate Coefficient) 等于复相关系数的平方。与简单线性回归中的决定系数相类似,它表示反应变量y 的总变异中可由回归模型中自变量解释的部分所占的比例,是衡量所建立模型效果好坏的指标之一。显然, R2 越大越好,但是也存在与复相关系数一样的不足。决定系数的计算公式如下:
3. 校正的决定系数R_adj^2
由于用R2评价拟合模型的好坏具有一定的局限性,即使向模型中增加的变量没有统计学意义, R2值仍会增大。因此需对其进行校正,从而形成了校正的决定系数(Adjusted R Square) 。 校正的决定系数总小于决定系数。校正的决定系数公式如下:
与R2不同的是,当模型中增加的变量没有统计学意义时,校正决定系数会减小,因此校正R2 是衡量所建模型好坏的重要指标之一,校正R2 越大,模型拟合得越好。但当p/n 很小时,如小于0.05 时,校正作用趋于消失。
实际应用中,R2、R_adj^2值的大小还与研究中实际观测到的自变量取值范围有关,一种可能的情况是,某个实际观测的自变量取值范围很窄,但此时所建模型的R2 很大,但这并不代表模型在外推应用时的效果肯定会很好。此外,有时虽然校正决定系数(或决定系数)很大,但误差均方仍很大,这会导致估计的?可信区间很宽,从而失去实际应用价值。
4. 剩余标准差
剩余标准差(Std. Error Of The Estimate) ,等于误差均方MSE 的算术平方根,就是残差之标准差,其大小反应了用建立的模型预测因变量时的精度。剩余标准差越小,说明建立的模型效果越好。与校正决定系数相类似地,当模型中增加无统计学意义的自变量时,剩余标准差反而会增大。此外,剩余标准差还在因变量估值的可信区间估计、自变量的选择等很多方面有着重要作用。
上面介绍的4项可以在SPSS软件上直接输出,除此之外还有一些常用的衡量多元回归模型优劣的标准在这里点一下,有兴趣的读者可参考相关参考书。
5、赤池信息准则
赤池信息准则也被称为AIC 准则(Akaike’s Information Criterion) ,由日本学者赤池于1973年提出,除应用于一般线性模型、广义线性模型的变量筛选外,还被应用于时间序列分析中自回归阶数的确定。AIC 由两部分组成,一部分反映模型的拟合精度,一部分反映了模型中参数的个数,即模型的繁简程度。其计算公式为:
n 为样本含量,与前面走义不同的是,这里的p 为模型中参数个数(包括常数项) ,L 为模型的最大似然函数。一昧地增加模型中自变量的个数虽然能使前半部分减小,而后一部分却不断增大,当模型中纳入无统计学意义的自变量时,前半部分减小的幅度小于后一部分增大的幅度,亏本的生意当然没人去做。AIC 值越小,说明拟合的模型既精度高又简洁。
应用不同的方法拟合的回归模型其AIC 值是不一样的,因此,在应用AIC 准则对不同的模型进行比较时,不同拟合方法得到的模型不能进行比较,AIC 准则只能用于比较同一种方法拟合得到的回归模型。
6、C_p 统计量
Cp 统计量由C. L. Mallows 于1964 年提出。
MSE_p 指模型中含有p 个参数(包括常数项)时的误差均方, MSE_p 为所有自变量均引入模型时的误差均方。用Cp 统计量选择模型的标准是选择Cp 最接近p 的那个模型。
7、其他标准
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18