京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如何衡量多元线性回归模型优劣
最近再做一些多元回归分析方面的分析,但对于得出的回归模型的好坏不知道如何才判断,于是查找了一下相关的教材书籍,找到了张文彤老师写的《SPSS统计分析高级教程》这本书,里面对于回归模型的优劣评价给出来了几点看法,我在此做了摘录分享一下。
当供建立回归模型的自变量有p 个时,仅考虑各因素的主效应,可以建立2^P 个模型(包括仅含常数项的模型)。如果来衡量这些模型的好坏?常用有以下几种标准:
1.复相关系数R
复相关系数(Multiple Correlation Coefficient) 又称多元相关系数,表示模型中所有自变量xi间与反应变量y之间线性回归关系的密切程度大小。实际上它是Yi 与其估计值的简单线性相关系数,即Pearson 相关系数。但其取值范围为(0 ,1),没有负值。R 值越大,说明线性回归关系越密切。但R值直大至多少才算足够好?不同学科的研究其判断标准也不一样。如社会科学研究学者可能认为R >0.4 己经足够好了(想想对股价的预测吧) ,而医学研究学者认为R =0.8 仍嫌偏小,这可能是因为社会科学研究中存在较多的对反应变量确有影响却无法进行测量的变量,当然也就无法对其进行统计分析。此外,用复相关系数评价多元线性回归模型优劣时存在不足,即使向模型中增加的变量没有统计学意义, R 值仍会增大。
2. 决定系数R2
模型的决定系数(Determinate Coefficient) 等于复相关系数的平方。与简单线性回归中的决定系数相类似,它表示反应变量y 的总变异中可由回归模型中自变量解释的部分所占的比例,是衡量所建立模型效果好坏的指标之一。显然, R2 越大越好,但是也存在与复相关系数一样的不足。决定系数的计算公式如下:
3. 校正的决定系数R_adj^2
由于用R2评价拟合模型的好坏具有一定的局限性,即使向模型中增加的变量没有统计学意义, R2值仍会增大。因此需对其进行校正,从而形成了校正的决定系数(Adjusted R Square) 。 校正的决定系数总小于决定系数。校正的决定系数公式如下:
与R2不同的是,当模型中增加的变量没有统计学意义时,校正决定系数会减小,因此校正R2 是衡量所建模型好坏的重要指标之一,校正R2 越大,模型拟合得越好。但当p/n 很小时,如小于0.05 时,校正作用趋于消失。
实际应用中,R2、R_adj^2值的大小还与研究中实际观测到的自变量取值范围有关,一种可能的情况是,某个实际观测的自变量取值范围很窄,但此时所建模型的R2 很大,但这并不代表模型在外推应用时的效果肯定会很好。此外,有时虽然校正决定系数(或决定系数)很大,但误差均方仍很大,这会导致估计的?可信区间很宽,从而失去实际应用价值。
4. 剩余标准差
剩余标准差(Std. Error Of The Estimate) ,等于误差均方MSE 的算术平方根,就是残差之标准差,其大小反应了用建立的模型预测因变量时的精度。剩余标准差越小,说明建立的模型效果越好。与校正决定系数相类似地,当模型中增加无统计学意义的自变量时,剩余标准差反而会增大。此外,剩余标准差还在因变量估值的可信区间估计、自变量的选择等很多方面有着重要作用。
上面介绍的4项可以在SPSS软件上直接输出,除此之外还有一些常用的衡量多元回归模型优劣的标准在这里点一下,有兴趣的读者可参考相关参考书。
5、赤池信息准则
赤池信息准则也被称为AIC 准则(Akaike’s Information Criterion) ,由日本学者赤池于1973年提出,除应用于一般线性模型、广义线性模型的变量筛选外,还被应用于时间序列分析中自回归阶数的确定。AIC 由两部分组成,一部分反映模型的拟合精度,一部分反映了模型中参数的个数,即模型的繁简程度。其计算公式为:
n 为样本含量,与前面走义不同的是,这里的p 为模型中参数个数(包括常数项) ,L 为模型的最大似然函数。一昧地增加模型中自变量的个数虽然能使前半部分减小,而后一部分却不断增大,当模型中纳入无统计学意义的自变量时,前半部分减小的幅度小于后一部分增大的幅度,亏本的生意当然没人去做。AIC 值越小,说明拟合的模型既精度高又简洁。
应用不同的方法拟合的回归模型其AIC 值是不一样的,因此,在应用AIC 准则对不同的模型进行比较时,不同拟合方法得到的模型不能进行比较,AIC 准则只能用于比较同一种方法拟合得到的回归模型。
6、C_p 统计量
Cp 统计量由C. L. Mallows 于1964 年提出。
MSE_p 指模型中含有p 个参数(包括常数项)时的误差均方, MSE_p 为所有自变量均引入模型时的误差均方。用Cp 统计量选择模型的标准是选择Cp 最接近p 的那个模型。
7、其他标准
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23