
用R软件做分类树和回归树(CART)
决策树(Decision Tree)又称为判定树,是运用于分类的一种树结构。其中的每个内部结点(internal node)代表对某个属性的一次测试,每条边代表一个测试结果,叶结点(leaf)代表某个类(class)或者类的分布(class distribution),最上面的结点是根结点。决策树提供了一种展示类似在什么条件下会得到什么值这类规则的方法。
构造决策树是采用自上而下的递归构造方法。以多叉树为例,如果一个训练数据集中的数据有几种属性值,则按照属性的各种取值把这个训练数据集再划分为对应的几个子集(分支),然后再依次递归处理各个子集。反之,则作为叶结点。
决策树构造的结果是一棵二叉或多叉树,它的输入是一组带有类别标记的训练数据。二叉树的内部结点(非叶结点)一般表示为一个逻辑判断,如形式为(a = b)的逻辑判断,其中a 是属性,b是该属性的某个属性值;树的边是逻辑判断的分支结果。多叉树(ID3)的内部结点是属性,边是该属性的所有取值,有几个属性值,就有几条边。树的叶结点都是类别标记。
使用决策树进行分类分为两步:
第1步:利用训练集建立并精化一棵决策树,建立决策树模型。这个过程实际上是一个从数据中获取知识,进行机器学习的过程。
第2步:利用生成完毕的决策树对输入数据进行分类。对输入的记录,从根结点依次测试记录的属性值,直到到达某个叶结点,从而找到该记录所在的类。
问题的关键是建立一棵决策树。这个过程通常分为两个阶段:
第一阶段,建树(Tree Building):决策树建树算法见下,这是一个递归的过程,最终将得到一棵树。
第二阶段,剪枝(Tree Pruning):剪枝的目的是降低由于训练集存在噪声而产生的起伏。
分类树和回归树(CART:Classification and Regression)
描述给定预测变量X后,变量Y条件分布的一种方法,使用二叉树将预测空间递归地划分为若干个子集,Y在这些子集上的分布是连续均匀的,树中的叶节点对应着划分的不同区域,划分是由与每个内部节点相关的分支规则(Splitting rules)确定的.通过从树的根节点逐渐到叶节点移动,每个预测样本被赋予一个叶节点,Y在该节点上的分布也被确定。利用CART进行预测同样需要一个学习样本(训练样本)对CART进行建树和评估,然后利用其进行预测。以下面的数据结构为例:
其中,为属性变量,可以是连续或离散的;
为类别变量,当
为离散时该模型为分类树,当
为有序变量时,模型为回归树。
根据给定的训练样本进行建模的步骤主要有:
CART的原理或细节,相关数据挖掘或机器学习书籍都有阐述,另外,百度了相关博客,个人感觉RaySaint的博客把握了CART的关键因素。详见:
http://underthehood.blog.51cto.com/2531780/564685
R软件完成CART
#1调用rpart包进行CART建模
library(rpart)
#1前列腺癌数据stagec
head(stagec)
progstat = factor(stagec$pgstat, levels = 0:1, labels = c("No", "Prog"))
#2建树,method主要有 "anova", "poisson", "class" "exp"。通常作生存分析选exp,因变量是因子变量选class,作poisson回归选poisson,其他情况通常选择anova;
cfit = rpart(progstat ~ age + eet + g2 + grade + gleason + ploidy,data = stagec, method ='class')
#输出结果
print(cfit)
#作树图
par(mar = rep(0.1, 4))
plot(cfit)
#添加标签
text(cfit)
#对分类结果作混淆矩阵
(temp = with(stagec, table(cut(grade, c(0, 2.5, 4)),
cut(gleason, c(2, 5.5, 10)),exclude = NULL)))
#3剪枝
cfit2=prune(cfit,cp=.02)
plot(cfit2)
text(cfit2)
printcp(cfit2)#输出剪枝表格
summary(cfit2)#输出CART完整细节,包括printcp内容
#4rpart中相关参数,rpart(,..,parms=())
"Anova"分类没有参数
"Poisson"分类只有单一参数:率的先验分布的变异系数,默认为1
"Exp"分类参数同poisson
"Class"分类包含的参数最为复杂,包括先验概率、损失矩阵或分类指标(Gini或Information)。#4.1比较Gini和Information分类指标,以自带汽车消费数据为例cu.summary
head(cu.summary)#查阅数据
fit1 = rpart(Reliability ~ Price + Country + Mileage + Type, data = cu.summary, parms = list(split = 'gini'))
fit2 = rpart(Reliability ~ Price + Country + Mileage + Type,data = cu.summary, parms = list(split = 'information'))
par(mfrow = c(1,2), mar = rep(0.1, 4))
plot(fit1, margin = 0.05); text(fit1, use.n = TRUE, cex = 0.8)
plot(fit2, margin = 0.05); text(fit2, use.n = TRUE, cex = 0.8)
#4.2比较parms中的先验概率(prior)和损失矩阵(loss)参数,以rpart自带驼背数据kyphosis为例
#查阅数据
head(kyphosis)
#默认的先验概率为Kyphosis两类的频率比fit1 = rpart(Kyphosis ~ Age + Number + Start, data = kyphosis)#定义先验概率prior=c(..,..)fit2 = rpart(Kyphosis ~ Age + Number + Start, data = kyphosis, parms = list(prior = c(0.65, 0.35)))
##loss参数设置,首先一个损失矩阵lmat
lmat = matrix(c(0,3, 4,0), nrow = 2, ncol = 2, byrow = FALSE)fit3 = rpart(Kyphosis ~ Age + Number + Start, data = kyphosis,parms = list(loss = lmat))par(mfrow = c(1, 3), mar = rep(0.1, 4))plot(fit1); text(fit1, use.n = TRUE, all = TRUE, cex = 0.8)plot(fit2); text(fit2, use.n = TRUE, all = TRUE, cex = 0.8)plot(fit3); text(fit3, use.n = TRUE, all = TRUE, cex = 0.8)
二、回归树
1.通常默认anova用来作回归树,以汽车消费数据car90为例,该数据包括34个变量110条观察值。
#查阅car90数据
head(car90);str(car90)
#剔除轮胎尺寸、型号等3个因素型变量(factor variable):"Rim", "Tires", "Model2"
cars = car90[, -match(c("Rim", "Tires", "Model2"), names(car90))]#建立回归树模型carfit = rpart(Price/1000 ~ ., data=cars)carfit;printcp(carfit);summary(carfit,cp=0.1)plot(carfit);text(carfit)
#图示不同分类的误差,par(mfrow=c(1,2)); rsq.rpart(carfit)
2.Poisson回归树
以数据solder为例
#查看数据,变量属性
head(solder);str(solder)
#建立poisson回归树
sfit = rpart(skips ~ Opening + Solder + Mask + PadType + Panel,data = solder, method = 'poisson',control = rpart.control(cp = 0.05, maxcompete = 2))sfit;printcp(sfit);summary(sfit,cp=.1)
3.生存模型回归树
#以前列腺癌数据stagec为例,调用survival包进行生存分析
library(survival)temp = coxph(Surv(pgtime, pgstat) ~ 1, stagec)newtime = predict(temp, type = 'expected')
pfit <- rpart(Surv(pgtime, pgstat) ~ age + eet + g2 + grade +gleason + ploidy, data = stagec)
pfit2 <- prune(pfit, cp = 0.016)#进行减枝
par(mar = rep(0.2, 4))
plot(pfit2, uniform = TRUE, branch = 0.4, compress = TRUE)
text(pfit2, use.n = TRUE)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15