
使用R语言进行协整关系检验
协整检验是为了检验非平稳序列的因果关系,协整检验是解决伪回归为问题的重要方法。首先回归伪回归例子:
伪回归Spurious regression伪回归方程的拟合优度、显著性水平等指标都很好,但是其残差序列是一个非平稳序列,拟合一个伪回归:
#调用相关R包
library(lmtest)
library(tseries)
#模拟序列
set.seed(123456)
e1=rnorm(500)
e2=rnorm(500)
trd=1:500
y1=0.8*trd+cumsum(e1)
y2=0.6*trd+cumsum(e2)
sr.reg=lm(y1~y2)
#提取回归残差
error=residuals(sr.reg)
#作残差散点图
plot(error, main="Plot of error")
#对残差进行单位根检验
adf.test(error)
## Dickey-Fuller = -2.548, Lag order = 7, p-value = 0.3463
## alternative hypothesis: stationary
#伪回归结果,相关参数都显著
summary(sr.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -30.654 -11.526 0.359 11.142 31.006
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -29.32697 1.36716 -21.4 <2e-16 ***
## y2 1.44079 0.00752 191.6 <2e-16 ***
## Residual standard error: 13.7 on 498 degrees of freedom
## Multiple R-squared: 0.987, Adjusted R-squared: 0.987
## F-statistic: 3.67e+04 on 1 and 498 DF, p-value: <2e-16
dwtest(sr.reg)
## DW = 0.0172, p-value < 2.2e-16
恩格尔-格兰杰检验Engle-Granger第一步:建立两变量(y1,y2)的回归方程,第二部:对该回归方程的残差(resid)进行单位根检验其中,原假设两变量不存在协整关系,备择假设是两变量存在协整关系。利用最小二乘法对回归方程进行估计,从回归方程中提取残差进行检验。
set.seed(123456)
e1=rnorm(100)
e2=rnorm(100)
y1=cumsum(e1)
y2=0.6*y1+e2
# (伪)回归模型
lr.reg=lm(y2~y1)
error=residuals(lr.reg)
adf.test(error)
## Dickey-Fuller = -3.988, Lag order = 4, p-value = 0.01262
## alternative hypothesis: stationary
error.lagged=error[-c(99,100)]
#建立误差修正模型ECM.REG
dy1=diff(y1)
dy2=diff(y2)
diff.dat=data.frame(embed(cbind(dy1, dy2),2))#emed表示嵌入时间序列dy1,dy2到diff.dat
colnames(diff.dat)=c("dy1","dy2","dy1.1","dy2.1")
ecm.reg=lm(dy2~error.lagged+dy1.1+dy2.1, data=diff.dat)
summary(ecm.reg)
## Residuals:
## Min 1Q Median 3Q Max
## -2.959 -0.544 0.137 0.711 2.307
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.0034 0.1036 0.03 0.97
## error.lagged -0.9688 0.1585 -6.11 2.2e-08 ***
## dy1.1 0.8086 0.1120 7.22 1.4e-10 ***
## dy2.1 -1.0589 0.1084 -9.77 5.6e-16 ***
## Residual standard error: 1.03 on 94 degrees of freedom
## Multiple R-squared: 0.546, Adjusted R-squared: 0.532
## F-statistic: 37.7 on 3 and 94 DF, p-value: 4.24e-16
par(mfrow=c(2,2))
plot(ecm.reg)
Johansen-Juselius(JJ)协整检验法,该方法是一种用向量自回归(VAR)模型进行检验的方法,适用于对多重一阶单整I(1)序列进行协整检验。JJ检验有两种:特征值轨迹检验和最大特征值检验。我们可以调用urca包中的ca.jo命令完成这两种检验。其语法:
ca.jo(x, type = c("eigen", "trace"), ecdet = c("none", "const", "trend"), K = 2,spec=c("longrun", "transitory"), season = NULL, dumvar = NULL)
其中:x为矩阵形式数据框;type用来设置检验方法;ecdet用于设置模型形式:none表示不带截距项,const表示带常数截距项,trend表示带趋势项。K表示自回归序列的滞后阶数;spec表示向量误差修正模型反映的序列间的长期或短期关系;season表示季节效应;dumvar表示哑变量设置。
set.seed(12345)e1=rnorm(250,0,0.5)e2=rnorm(250,0,0.5)e3=rnorm(250,0,0.5)#模拟没有移动平均的向量自回归序列;u1.ar1=arima.sim(model=list(ar=0.75), innov=e1, n=250)u2.ar1=arima.sim(model=list(ar=0.3), innov=e2, n=250)y3=cumsum(e3)y1=0.8*y3+u1.ar1y2=-0.3*y3+u2.ar1#合并y1,y2,y3构成进行JJ检验的数据库;y.mat=data.frame(y1, y2, y3)#调用urca包中cajo命令对向量自回归序列进行JJ协整检验vecm=ca.jo(y.mat)jo.results=summary(vecm)#cajorls命令可以得到限制协整阶数的向量误差修正模型的最小二乘法回归结果vecm.r2=cajorls(vecm, r=2);vecm.r2## Call:lm(formula = substitute(form1), data = data.mat)## Coefficients:## y1.d y2.d y3.d## ect1 -0.33129 0.06461 0.01268## ect2 0.09447 -0.70938 -0.00916## constant 0.16837 -0.02702 0.02526## y1.dl1 -0.22768 0.02701 0.06816## y2.dl1 0.14445 -0.71561 0.04049## y3.dl1 0.12347 -0.29083 -0.07525## $beta## ect1 ect2## y1.l2 1.000e+00 0.0000## y2.l2 -3.402e-18 1.0000## y3.l2 -7.329e-01 0.2952
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18