
写量化策略时常用的技巧
1.善用panel保存数据
说明:pandas有三种数据结构,分别是Series(一维),DataFrame(二维),panel(三维)
例子:沪深300成分股所有股票[stock list]在某些特征指标如成交量、收盘价[indicator list]上的某时间区间内的历史序列[time series],
[stock list] * [indicator list] * [time series]=3维
Q:如何通过Windpy接口来形成我们的三维面板数据呢?
A:按个股循环,获取每只股票的序列数据(二维);再把300只个股合并成三维。
例代码1:获取面板原始数据(daily),后期再在这张大的面板数据上计算月度的情况,再排序形成组合。再形成一个新的面板。【思路:总-分-总】
ps1:缺点就是从总表中拆开按每个因子形成月度收益再concat合并,这个过程很麻烦,不如一开始就按因子分开处理好,再合并形成面板数据。
ps2:wind API每天12000条左右的记录限制,意味着300只股票,每天只能他爸爸的获取30天的数据,10年的数据(120个月)得花120天来下载,这很坑啊。。。肯定是要另外想办法的,平时写策略主要目的是训练思路和练手,对数据质量要求不太高,目前看来,聚宽是最好的选择,策略编写平台类似jupyter notebook,也支持python的所有package。
import pandas as pd
import copy
from WindPy import w
import datetime
w.start()
## 函数getAsharePanels(),获取A股历史面板数据
def getAsharePanels(stockcodes,start_date,end_date):
append_data=pd.DataFrame(columns=['trade_date','stock_code','open','high','low','close','volume']) #产生一个辅助数据集,帮助后面循环时汇总
individual_data=pd.DataFrame() #存放个股交易信息的数据集
result={} #result是一个三维的字典
for individual_stockcode in stockcodes:
# 依次生成个股数据集(变量包括:日期、代码、开盘价、最高价、最低价、收盘价、成交量)
stock=w.wsd(individual_stockcode, "trade_code,open,high,low,close,volume",start_date,end_date)
individual_data['trade_date']=stock.Times
individual_data['stock_code']=stock.Data[0]
individual_data['open']=stock.Data[1]
individual_data['high']=stock.Data[2]
individual_data['low']=stock.Data[3]
individual_data['close']=stock.Data[4]
individual_data['volume']=stock.Data[5]
# 通过300次迭代,把300只股票的df格式的individual_data数据放到result里,形成3维的字典
result[+1]=individual_data
rawdata = pd.Panel(result) #获取的沪深300成分股的3维数据保存在rawdata中
return rawdata
## 调用函数getAsharePanels(),获取A股历史面板数据
todayDate=datetime.datetime.strftime(datetime.date.today(),"%Y%m%d")
wsetdata=w.wset('SectorConstituent','date='+todayDate+';sectorId=1000000090000000;field=wind_code') #通过wset获取沪深300成分股代码
stockcodes=list(wsetdata.Data[0])
start_date='20120101' #样本数据起始日期
end_date='20171231' #样本数据结束日期
rawdata_panel=getAsharePanels(stockcodes,start_date,end_date)
例代码2:
【先分后合】
step1:
一维:先写好一系列函数,分开处理好各因子的历史序列数据(如:月度收益、排序形成portfolio等)
step2:写个两层的循环,把一维变成二维,再变成三维
二维(内层循环):再把一维按照因子类别作为二维的dataframe的列,以此思路来形成二维表,如:df[‘PE’]=seriesXXX
三维(外层循环):按monthly的时间来循环,把二维的截面数据加上时间维度,变成三维的,形成一张panel
Q:分开处理好数据以后,如何形成我们的三维面板数据呢?
A:最外层循环:按时间(换仓频率一般是月度)
最内层循环:调用windpy接口获取每只股票的所有因子的截面数据,按股票代码循环(成交等、价格等)
## 函数1:计算组合的月度收益率
def caculate_port_monthly_return(port,startdate,enddate,nextdate,CMV):
close1 = get_price(port, startdate, enddate, 'daily', ['close']) #三维面板数据
close2 = get_price(port, enddate, nextdate, 'daily',['close']) #面板数据
weighted_m_return = ((close2['close'].ix[0,:]/close1['close'].ix[0,:]-1)).mean() #等权加权
return weighted_m_return
## 函数2:计算benchmark组合的月度收益
def caculate_benchmark_monthly_return(startdate,enddate,nextdate):
close1 = get_price(['000001.XSHG'],startdate,enddate,'daily',['close'])['close']
#二维
close2 = get_price(['000001.XSHG'],enddate, nextdate, 'daily',['close'])['close']
benchmark_return = (close2.ix[0,:]/close1.ix[0,:]-1).sum()
print close1
return benchmark_return
## 核心策略:构建因子组合并计算每月换仓时不同组合的月收益率
# 得到结果monthly_return为panel数据,储存所有因子,在7×12个月内5个组合及benchmark的月收益率
factors = ['B/M','EPS','PEG','ROE','ROA','GP/R','P/R','L/A','FAP','CMV']
#因为研究模块取fundmental数据默认date为研究日期的前一天。所以要自备时间序列。按月取
year = ['2011','2012','2013','2014','2015','2016','2017']
month = ['01','02','03','04','05','06','07','08','09','10','11','12']
result = {}
for i in range(7*12):
startdate = year[i/12] + '-' + month[i%12] + '-01'
try:
enddate = year[(i+1)/12] + '-' + month[(i+1)%12] + '-01'
except IndexError:
enddate = '2016-01-01'
try:
nextdate = year[(i+2)/12] + '-' + month[(i+2)%12] + '-01'
except IndexError:
if enddate == '2018-01-01':
nextdate = '2018-02-01'
else:
nextdate = '2018-01-01'
#print 'time %s'%startdate
fdf = get_factors(startdate,factors)
CMV = fdf['CMV']
#5个组合,10个因子
df = DataFrame(np.zeros(6*10).reshape(6,10),index = ['port1','port2','port3','port4','port5','benchmark'],columns = factors)
for fac in factors:
score = fdf[fac].order()
port1 = list(score.index)[: len(score)/5]
port2 = list(score.index)[ len(score)/5+1: 2*len(score)/5]
port3 = list(score.index)[ 2*len(score)/5+1: -2*len(score)/5]
port4 = list(score.index)[ -2*len(score)/5+1: -len(score)/5]
port5 = list(score.index)[ -len(score)/5+1: ]
df.ix['port1',fac] = caculate_port_monthly_return(port1,startdate,enddate,nextdate,CMV)
df.ix['port2',fac] = caculate_port_monthly_return(port2,startdate,enddate,nextdate,CMV)
df.ix['port3',fac] = caculate_port_monthly_return(port3,startdate,enddate,nextdate,CMV)
df.ix['port4',fac] = caculate_port_monthly_return(port4,startdate,enddate,nextdate,CMV)
df.ix['port5',fac] = caculate_port_monthly_return(port5,startdate,enddate,nextdate,CMV)
df.ix['benchmark',fac] = caculate_benchmark_monthly_return(startdate,enddate,nextdate)
#print 'factor %s'%faesult[i+1]=df
monthly_return = pd.Panel(result)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18