京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python连接MySQL并使用fetchall()方法过滤特殊字符
来一个简单的例子,看Python如何操作数据库,相比Java的JDBC来说,确实非常简单,省去了很多复杂的重复工作,只关心数据的获取与操作。
准备工作
需要有相应的环境和模块:
Ubuntu 14.04 64bit
Python 2.7.6
MySQLdb
注意:Ubuntu 自带安装了Python,但是要使用Python连接数据库,还需要安装MySQLdb模块,安装方法也很简单:
sudo apt-get install MySQLdb
然后进入Python环境,import这个包,如果没有报错,则安装成功了:

python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>
Python标准的数据库接口的Python DB-API(包括Python操作MySQL)。大多数Python数据库接口坚持这个标准。不同的数据库也就需要不同额模块,由于我本机装的是MySQL,所以使用了MySQLdb模块,对不同的数据库而言,只需要更改底层实现了接口的模块,代码不需要改,这就是模块的作用。
Python数据库操作
首先我们需要一个测试表
建表语句:
CREATE DATABASE study;
use study;
DROP TABLE IF EXISTS python_demo;
CREATE TABLE python_demo (
id int NOT NULL AUTO_INCREMENT COMMENT '主键,自增',
user_no int NOT NULL COMMENT '用户编号',
user_name VARBINARY(50) NOT NULL COMMENT '用户名',
password VARBINARY(50) NOT NULL COMMENT '用户密码',
remark VARBINARY(255) NOT NULL COMMENT '用户备注',
PRIMARY KEY (id,user_no)
)ENGINE =innodb DEFAULT CHARSET = utf8 COMMENT '用户测试表';
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1001,'张三01','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1002,'张三02','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1003,'张三03','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1004,'张三04','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1005,'张三05','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1006,'张三06','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1007,'张三07','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1008,'张三08','admin','我是张三');
Python代码
# --coding=utf8--
import ConfigParser
import sys
import MySQLdb
def init_db():
try:
conn = MySQLdb.connect(host=conf.get('Database', 'host'),
user=conf.get('Database', 'user'),
passwd=conf.get('Database', 'passwd'),
db=conf.get('Database', 'db'),
charset='utf8')
return conn
except:
print "Error:数据库连接错误"
return None
def select_demo(conn, sql):
try:
cursor = conn.cursor()
cursor.execute(sql)
return cursor.fetchall()
except:
print "Error:数据库连接错误"
return None
def update_demo():
pass
def delete_demo():
pass
def insert_demo():
pass
if __name__ == '__main__':
conf = ConfigParser.ConfigParser()
conf.read('mysql.conf')
conn = init_db()
sql = "select * from %s" % conf.get('Database', 'table')
data = select_demo(conn, sql)
pass
fetchall()字段特殊字符过滤处理
最近在做数据仓库的迁移工作,之前数据仓库的数据都是用的shell脚本来抽取,后来换了python脚本.
但是在把数据抽取存放到hadoop时,出现了一个问题:
由于数据库字段很多,提前也不知道数据库字段会存储什么内容,hive建表是以\t\n做分隔,这就导致了一个问题,如果mysql字段内容里面本身含有\t\n,那么就会出现字段错位情况,并且很头疼的是mysql有100多个字段,也不知道哪个字段会出现这个问题.
shell脚本里的做法是在需要抽取的字段上用mysql的replace函数对字段进行替换,例如,假设mysql里的字段是column1 varchar(2000),那么很可能就会出现有特殊字符的情况,在查询的sql语句里加上
select replace(replace(replace(column1,'\r',''),'\n',''),'\t','')
之前一直是这么干的,但是这样写sql特别长,特别是有100多个字段,也不知道哪个有特殊字符,只要都加上.
所以在python中对字段不加处理,最终导致hive表字段对应出现偏差,所以在python里从mysql查询到的字段在写到文件之前需要对每个字段进行过滤处理
看个例子,我就以mysql测试为例,首先建一张测试表
CREATE TABLE `filter_fields` (
`field1` varchar(50) DEFAULT NULL,
`field2` varchar(50) DEFAULT NULL,
`field3` varchar(50) DEFAULT NULL,
`field4` varchar(50) DEFAULT NULL,
`field5` varchar(50) DEFAULT NULL,
`field6` varchar(50) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
有六个字段,都是varchar类型,插入新数据可以在里面插入特殊字符.简单插入条数据测试看看:
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test01','test02','test03','test04','test05','test06');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test11\ntest11','test12\n\n','test13','test14','test15','test16');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\ttest21','test22\ttest22\ttest22','test23\t\t\t','test4','test5','test6');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\rest21','test22\r\rest22\r\rest22','test23\r\r\r','test4','test5','test6');
其中数据里插入的特殊字符,可能连在一起,也有不连在一起的.
python测试代码:
# coding=utf-8
import MySQLdb
import sys
db_host = '127.0.0.1' # 数据库地址
db_port = 3306 # 数据库端口
db_user = 'root' # mysql用户名
db_pwd = 'yourpassword' # mysql用户密码,换成你的密码
db_name = 'test' # 数据库名
db_table = 'filter_fields' # 数据库表
# 过滤sql字段结果中的\t\n
def extract_data(table_name):
try:
conn = MySQLdb.connect(host=db_host, port = db_port, user=db_user,
passwd = db_pwd, db = db_name, charset = "utf8")
cursor = conn.cursor()
except MySQLdb.Error, e:
print '数据库连接异常'
sys.exit(1)
try:
sql = 'select * from %s;'%(table_name)
cursor.execute(sql)
rows = cursor.fetchall()
print '====字段未过滤查询结果===='
for row in rows:
print row
print '====字段过滤之后结果===='
rows_list = []
for row in rows:
row_list = []
for column in row:
row_list.append(column.replace('\t', '').replace('\n', '').replace('\r', ''))
rows_list.append(row_list)
print rows_list[-1] # [-1]表示列表最后一个元素
return rows_list
except MySQLdb.Error, e:
print '执行sql语句失败'
cursor.close()
conn.close()
sys.exit(1)
if __name__ == '__main__':
print 'begin:'
rows = extract_data(db_table)
pass
看看输出结果:
字段未过滤查询结果
(u'test01', u'test02', u'test03', u'test04', u'test05', u'test06')
(u'test11\ntest11', u'test12\n\n', u'test13', u'test14', u'test15', u'test16')
(u'test21\ttest21', u'test22\ttest22\ttest22', u'test23\t\t\t', u'test4', u'test5', u'test6')
(u'test21\rest21', u'test22\r\rest22\r\rest22', u'test23\r\r\r', u'test4', u'test5', u'test6')
字段过滤之后结果
[u'test01', u'test02', u'test03', u'test04', u'test05', u'test06']
[u'test11test11', u'test12', u'test13', u'test14', u'test15', u'test16']
[u'test21test21', u'test22test22test22', u'test23', u'test4', u'test5', u'test6']
[u'test21est21', u'test22est22est22', u'test23', u'test4', u'test5', u'test6']
可以看到,制表符,换行符,回车都被过滤了.
建议:最后说点题外话,不要小视\r,回车符.很多人以为回车符就是换行符,其实不是的,\r表示回车符,\n表示新行.之前代码里其实是过滤掉了\t\n的,但是抽取的数据还是不对,后来看了源码之后才发现,原来是没有过滤\r,就这个不同导致了很多数据抽取不对.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27