京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python连接MySQL并使用fetchall()方法过滤特殊字符
来一个简单的例子,看Python如何操作数据库,相比Java的JDBC来说,确实非常简单,省去了很多复杂的重复工作,只关心数据的获取与操作。
准备工作
需要有相应的环境和模块:
Ubuntu 14.04 64bit
Python 2.7.6
MySQLdb
注意:Ubuntu 自带安装了Python,但是要使用Python连接数据库,还需要安装MySQLdb模块,安装方法也很简单:
sudo apt-get install MySQLdb
然后进入Python环境,import这个包,如果没有报错,则安装成功了:

python
Python 2.7.6 (default, Jun 22 2015, 17:58:13)
[GCC 4.8.2] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import MySQLdb
>>>
Python标准的数据库接口的Python DB-API(包括Python操作MySQL)。大多数Python数据库接口坚持这个标准。不同的数据库也就需要不同额模块,由于我本机装的是MySQL,所以使用了MySQLdb模块,对不同的数据库而言,只需要更改底层实现了接口的模块,代码不需要改,这就是模块的作用。
Python数据库操作
首先我们需要一个测试表
建表语句:
CREATE DATABASE study;
use study;
DROP TABLE IF EXISTS python_demo;
CREATE TABLE python_demo (
id int NOT NULL AUTO_INCREMENT COMMENT '主键,自增',
user_no int NOT NULL COMMENT '用户编号',
user_name VARBINARY(50) NOT NULL COMMENT '用户名',
password VARBINARY(50) NOT NULL COMMENT '用户密码',
remark VARBINARY(255) NOT NULL COMMENT '用户备注',
PRIMARY KEY (id,user_no)
)ENGINE =innodb DEFAULT CHARSET = utf8 COMMENT '用户测试表';
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1001,'张三01','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1002,'张三02','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1003,'张三03','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1004,'张三04','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1005,'张三05','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1006,'张三06','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1007,'张三07','admin','我是张三');
INSERT INTO python_demo(user_no, user_name, password, remark) VALUES
(1008,'张三08','admin','我是张三');
Python代码
# --coding=utf8--
import ConfigParser
import sys
import MySQLdb
def init_db():
try:
conn = MySQLdb.connect(host=conf.get('Database', 'host'),
user=conf.get('Database', 'user'),
passwd=conf.get('Database', 'passwd'),
db=conf.get('Database', 'db'),
charset='utf8')
return conn
except:
print "Error:数据库连接错误"
return None
def select_demo(conn, sql):
try:
cursor = conn.cursor()
cursor.execute(sql)
return cursor.fetchall()
except:
print "Error:数据库连接错误"
return None
def update_demo():
pass
def delete_demo():
pass
def insert_demo():
pass
if __name__ == '__main__':
conf = ConfigParser.ConfigParser()
conf.read('mysql.conf')
conn = init_db()
sql = "select * from %s" % conf.get('Database', 'table')
data = select_demo(conn, sql)
pass
fetchall()字段特殊字符过滤处理
最近在做数据仓库的迁移工作,之前数据仓库的数据都是用的shell脚本来抽取,后来换了python脚本.
但是在把数据抽取存放到hadoop时,出现了一个问题:
由于数据库字段很多,提前也不知道数据库字段会存储什么内容,hive建表是以\t\n做分隔,这就导致了一个问题,如果mysql字段内容里面本身含有\t\n,那么就会出现字段错位情况,并且很头疼的是mysql有100多个字段,也不知道哪个字段会出现这个问题.
shell脚本里的做法是在需要抽取的字段上用mysql的replace函数对字段进行替换,例如,假设mysql里的字段是column1 varchar(2000),那么很可能就会出现有特殊字符的情况,在查询的sql语句里加上
select replace(replace(replace(column1,'\r',''),'\n',''),'\t','')
之前一直是这么干的,但是这样写sql特别长,特别是有100多个字段,也不知道哪个有特殊字符,只要都加上.
所以在python中对字段不加处理,最终导致hive表字段对应出现偏差,所以在python里从mysql查询到的字段在写到文件之前需要对每个字段进行过滤处理
看个例子,我就以mysql测试为例,首先建一张测试表
CREATE TABLE `filter_fields` (
`field1` varchar(50) DEFAULT NULL,
`field2` varchar(50) DEFAULT NULL,
`field3` varchar(50) DEFAULT NULL,
`field4` varchar(50) DEFAULT NULL,
`field5` varchar(50) DEFAULT NULL,
`field6` varchar(50) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
有六个字段,都是varchar类型,插入新数据可以在里面插入特殊字符.简单插入条数据测试看看:
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test01','test02','test03','test04','test05','test06');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test11\ntest11','test12\n\n','test13','test14','test15','test16');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\ttest21','test22\ttest22\ttest22','test23\t\t\t','test4','test5','test6');
insert into filter_fields(field1,field2,field3,field4,field5,field6) VALUES
('test21\rest21','test22\r\rest22\r\rest22','test23\r\r\r','test4','test5','test6');
其中数据里插入的特殊字符,可能连在一起,也有不连在一起的.
python测试代码:
# coding=utf-8
import MySQLdb
import sys
db_host = '127.0.0.1' # 数据库地址
db_port = 3306 # 数据库端口
db_user = 'root' # mysql用户名
db_pwd = 'yourpassword' # mysql用户密码,换成你的密码
db_name = 'test' # 数据库名
db_table = 'filter_fields' # 数据库表
# 过滤sql字段结果中的\t\n
def extract_data(table_name):
try:
conn = MySQLdb.connect(host=db_host, port = db_port, user=db_user,
passwd = db_pwd, db = db_name, charset = "utf8")
cursor = conn.cursor()
except MySQLdb.Error, e:
print '数据库连接异常'
sys.exit(1)
try:
sql = 'select * from %s;'%(table_name)
cursor.execute(sql)
rows = cursor.fetchall()
print '====字段未过滤查询结果===='
for row in rows:
print row
print '====字段过滤之后结果===='
rows_list = []
for row in rows:
row_list = []
for column in row:
row_list.append(column.replace('\t', '').replace('\n', '').replace('\r', ''))
rows_list.append(row_list)
print rows_list[-1] # [-1]表示列表最后一个元素
return rows_list
except MySQLdb.Error, e:
print '执行sql语句失败'
cursor.close()
conn.close()
sys.exit(1)
if __name__ == '__main__':
print 'begin:'
rows = extract_data(db_table)
pass
看看输出结果:
字段未过滤查询结果
(u'test01', u'test02', u'test03', u'test04', u'test05', u'test06')
(u'test11\ntest11', u'test12\n\n', u'test13', u'test14', u'test15', u'test16')
(u'test21\ttest21', u'test22\ttest22\ttest22', u'test23\t\t\t', u'test4', u'test5', u'test6')
(u'test21\rest21', u'test22\r\rest22\r\rest22', u'test23\r\r\r', u'test4', u'test5', u'test6')
字段过滤之后结果
[u'test01', u'test02', u'test03', u'test04', u'test05', u'test06']
[u'test11test11', u'test12', u'test13', u'test14', u'test15', u'test16']
[u'test21test21', u'test22test22test22', u'test23', u'test4', u'test5', u'test6']
[u'test21est21', u'test22est22est22', u'test23', u'test4', u'test5', u'test6']
可以看到,制表符,换行符,回车都被过滤了.
建议:最后说点题外话,不要小视\r,回车符.很多人以为回车符就是换行符,其实不是的,\r表示回车符,\n表示新行.之前代码里其实是过滤掉了\t\n的,但是抽取的数据还是不对,后来看了源码之后才发现,原来是没有过滤\r,就这个不同导致了很多数据抽取不对.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15