京公网安备 11010802034615号
经营许可证编号:京B2-20210330
逻辑回归是最简单的机器学习模型,常常应用于各种简单的任务中。这里记录逻辑回归的背景以及学习方法,权当自己的学习记录总结。
逻辑回归:首先,它不是一个回归模型,而是一个分类模型,它是被用来做分类的。 之所以称之为回归,是因为它的学习的是模型模型的参数以最佳拟合已有的数据。(比如,根据已有的一些点,回归出它的直线参数的拟合过程,就称之为回归。)
学习方法:梯度上升法,随机梯度上升法。
模型特点:
1. 优点:训练快、易理解、易实现
2. 缺点:模型不够强大、拟合能力有限,欠拟合,对于复杂的任务效果不够好
在二分类的模型中,我们能最希望的函数是一个二值化函数,也就是
h(x) = 0 当 x > 阈值,h(x)=1 当 x < 阈值
函数下图所示:
然而,虽然这个函数是我们很想学习到的函数,但是由于它在阈值点处的跳跃性(不连续性),使得它变得不好处理(比如在该点处没有导数(梯度)的问题)。
幸好,自然是美好的,我们可以用其它的函数来近似这个函数,Sigmoid 函数就是一个很好的近似方法
其函数图形如下所示(值阈(0–>1))
函数表达式为:

相比于原始的二值化函数,sigmoid函数具有处处连续、可导的优点。
为了实现逻辑回归分类器,我们将每个特征都乘以一个回归系数wi,然后将结果相加得到一个值,并将这个值带入到sigmoid函数中,就会得到一个0–>1之间的数值,而大于0.5的值被分为1类,小于0.5的被分为0类。所以,逻辑回归也被称之为一个概率估计模型。
在已经确定了分类器模型的函数形式之后,问题就在于如何学习以获得最佳的回归系数?
主要是采用梯度上升及其变形的方法。
它的思想是:要找到某个函数的最大值,最好的方法就是沿着该函数的梯度方向进行寻找。(要有梯度就要求待计算的点有定义并且可导,所以二值化函数不能使用。)
权重更新:

其中alpha为步长,学习(训练)的停止条件一般为:迭代到达一定的次数,或者算法已经到达了一定的误差范围之内。
注意区别于梯度下降法:跟梯度上升法是相同的道理,加法变为减法。
随机梯度上升法:因为梯度上升法在每次更新回归系数的时候都需要遍历整个数据集合,当数据很多的时候,就不适用了,改进的方法为:一次只使用一个样本来更新回归系数,这种方法称之为随机梯度上升法。
只是它用来寻找最小值(一般是loss最小),而梯度上升法用来寻找最大值。
所以总的来说,逻辑回归的计算方法很简单,就分为两步:1,计算梯度,2,更新权值。
具体的权重更新方法为:
具体的代码如下(python):
def sigmoid(x):
'''
逻辑回归的判别函数
'''
return 1.0/(1.0+exp(-x))
def gradientAscent(datas,labels):
'''
输入参数datas:训练数据矩阵,每一行为一个数据
输入参数labels:标签数据,为一个值。
要求参数数据匹配
'''
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(dataX)
alpha = 0.001
#步长,也就是学习率
itera_num = 1000
#迭代次数
W = ones((n,1))
for i in range(itera_num):
H = sigmoid(dataX * W)
# H 是一个列向量,元素个数==m
error = dataY - H
W = W + alpha * X.transpose()*error
return W
def stochasticGradientAscent(datas,labels):
dataX = mat(datas)
#每列代表一个特征,每行代表不同的训练样本。
dataY = mat(labels).transpose()
#标签,将行向量转置为列向量
m,n = shape(datas)
alpha = 0.01
W = ones(n)
for i in range(m):
h = sigmoid(sum(dataX[i]*W))
error = dataY[i] - h
W = W + alpha * error *dataX[i]
return W
总结: 逻辑回归的目的是为了寻找非线性函数Sigmoid的最佳拟合参数中的权值w,其w的值通过梯度上升法来学习到。随机梯度上升一次只处理少量的样本,节约了计算资源同时也使得算法可以在线学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04