京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人脸识别中的机器学习
机器学习的一个主要应用领域是对客观对象的识别,也称为模式识别----目的是赋予机器类似生物的信息识别和处理能力。而机器视觉研究的是如何用机器代替人眼来感知外部的世界,测量和识别外部对象,并作出正确的判断。对图像的不同特征来编制专门的算法进行处理----OpenCV 广泛应用于人机互动、物体识别、图像分割、人脸识别、动作识别、运动跟踪、机器人、运动分析、机器视觉、结构分析、自动汽车驾驶等领域。
一个完整的人脸识别系统包括:人脸检测、关键点提取、人脸对齐、人脸规整、人脸分类、识别策略等模块。
Haar cascade 实现代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml')
img = cv2.imread('mypicture.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 识别输入图片中的人脸对象.返回对象的矩形尺寸
# 函数原型detectMultiScale(gray, 1.2,3,CV_HAAR_SCALE_IMAGE,Size(30, 30))
# gray需要识别的图片
# 1.2:表示每次图像尺寸减小的比例
# 3:表示每一个目标至少要被检测到4次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸)
# CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的最小最大尺寸
# faces:表示检测到的人脸目标序列
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存图片
LBP cascade 的实现代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\lbpcascades\\lbpcascade_frontalface.xml')
img = cv2.imread('snapshot0001.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存图片
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15