
人脸识别中的机器学习
机器学习的一个主要应用领域是对客观对象的识别,也称为模式识别----目的是赋予机器类似生物的信息识别和处理能力。而机器视觉研究的是如何用机器代替人眼来感知外部的世界,测量和识别外部对象,并作出正确的判断。对图像的不同特征来编制专门的算法进行处理----OpenCV 广泛应用于人机互动、物体识别、图像分割、人脸识别、动作识别、运动跟踪、机器人、运动分析、机器视觉、结构分析、自动汽车驾驶等领域。
一个完整的人脸识别系统包括:人脸检测、关键点提取、人脸对齐、人脸规整、人脸分类、识别策略等模块。
Haar cascade 实现代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml')
img = cv2.imread('mypicture.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 识别输入图片中的人脸对象.返回对象的矩形尺寸
# 函数原型detectMultiScale(gray, 1.2,3,CV_HAAR_SCALE_IMAGE,Size(30, 30))
# gray需要识别的图片
# 1.2:表示每次图像尺寸减小的比例
# 3:表示每一个目标至少要被检测到4次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸)
# CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的最小最大尺寸
# faces:表示检测到的人脸目标序列
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存图片
LBP cascade 的实现代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\lbpcascades\\lbpcascade_frontalface.xml')
img = cv2.imread('snapshot0001.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存图片
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18