
人脸识别中的机器学习
机器学习的一个主要应用领域是对客观对象的识别,也称为模式识别----目的是赋予机器类似生物的信息识别和处理能力。而机器视觉研究的是如何用机器代替人眼来感知外部的世界,测量和识别外部对象,并作出正确的判断。对图像的不同特征来编制专门的算法进行处理----OpenCV 广泛应用于人机互动、物体识别、图像分割、人脸识别、动作识别、运动跟踪、机器人、运动分析、机器视觉、结构分析、自动汽车驾驶等领域。
一个完整的人脸识别系统包括:人脸检测、关键点提取、人脸对齐、人脸规整、人脸分类、识别策略等模块。
Haar cascade 实现代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\haarcascades\\haarcascade_frontalface_alt_tree.xml')
img = cv2.imread('mypicture.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 识别输入图片中的人脸对象.返回对象的矩形尺寸
# 函数原型detectMultiScale(gray, 1.2,3,CV_HAAR_SCALE_IMAGE,Size(30, 30))
# gray需要识别的图片
# 1.2:表示每次图像尺寸减小的比例
# 3:表示每一个目标至少要被检测到4次才算是真的目标(因为周围的像素和不同的窗口大小都可以检测到人脸)
# CV_HAAR_SCALE_IMAGE表示不是缩放分类器来检测,而是缩放图像,Size(30, 30)为目标的最小最大尺寸
# faces:表示检测到的人脸目标序列
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存图片
LBP cascade 的实现代码如下:
[python] view plain copy
# -*- coding: utf-8 -*-
from numpy import *
import numpy as np
import cv2
face_cascade = cv2.CascadeClassifier('E:\\opencv\\sources\\data\\lbpcascades\\lbpcascade_frontalface.xml')
img = cv2.imread('snapshot0001.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.2, 3)
for (x,y,w,h) in faces:
img2 = cv2.rectangle(img,(x,y),(x+w,y+h),(255,255,255),4)
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
cv2.imshow('img',img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("paulwalker.head.jpg", img) # 保存图片
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15