京公网安备 11010802034615号
经营许可证编号:京B2-20210330
【咱们的目标】系列算法讲解旨在用最简单易懂的故事情节帮助大家掌握晦涩无趣的机器学习,适合对数学很头疼的同学们,小板凳走起!
决策树模型是机器学习中最经典的算法之一啦,用途之广泛我就不多吹啦,其实很多机器学习算法都是以树模型为基础的,比如随机森林,Xgboost等一听起来就是很牛逼的算法(其实用起来也很牛逼)。
首先我们来看一下在上面的例子中我想根据人的年龄和性别(两个特征)对5个人(样本数据)进行决策,看看他们喜不喜欢玩电脑游戏。首先根据年龄(根节点)进行了一次分支决策,又对左节点根据性别进行了一次分支决策,这样所有的样本都落到了最终的叶子节点,可以把每一个叶子节点当成我们最终的决策结果(比如Y代表喜欢玩游戏,N代表不喜欢玩游戏)。这样我们就通过决策树完成了非常简单的分类任务!
再来看一下树的组成,主要结构有根节点(数据来了之后首先进行判断的特征),非叶子节点(中间的一系列过程),叶子节点(最终的结果),这些都是我们要建立的模块!
在决策中树中,我们刚才的喜欢玩电脑游戏的任务看起来很简单嘛,从上往下去走不就OK了吗!但是难点在于我们该如何构造这棵决策树(节点的选择以及切分),这个看起来就有些难了,因为当我们手里的数据特征比较多的时候就该犹豫了,到底拿谁当成是根节点呢?
这个就是我们最主要的问题啦,节点究竟该怎么选呢?不同的位置又有什么影响?怎么对特征进行切分呢?一些到这,我突然想起来一个段子,咱们来乐呵乐呵!
武林外传中这个段子够我笑一年的,其实咱们在推导机器学习算法的时候,也需要这么去想想,只有每一步都是有意义的我们才会选择去使用它。回归正题,我们选择的根节点其实意味着它的重要程度是最大的,相当于大当家了,因为它会对数据进行第一次切分,我们需要把最重要的用在最关键的位置,在决策树算法中,为了使得算法能够高效的进行,那么一开始就应当使用最有价值的特征。
接下来咱们就得唠唠如何选择大当家了,我们提出了一个概念叫做熵(不是我提出的。。。穿山甲说的),这里并不打算说的那么复杂,一句话解释一下,熵代表你经过一次分支之后分类的效果的好坏,如果一次分支决策后都属于一个类别(理想情况下,也是我们的目标)这时候我们认为效果很好嘛,那熵值就很低。如果分支决策后效果很差,什么类别都有,那么熵值就会很高,公式已经给出,log函数推荐大家自己画一下,然后看看概率[0,1]上的时候log函数值的大小(你会豁然开朗的)。
不确定性什么时候最大呢?模棱两可的的时候(就是你犹豫不决的时候)这个时候熵是最大的,因为什么类别出现的可能性都有。那么我们该怎么选大当家呢?(根节点的特征)当然是希望经过大当家决策后,熵值能够下降(意味着类别更纯净了,不那么混乱了)。在这里我们提出了一个词叫做信息增益(就当是我提出的吧。。。),信息增益表示经过一次决策后整个分类后的数据的熵值下降的大小,我们希望下降越多越好,理想情况下最纯净的熵是等于零的。
一个栗子:准备一天一个哥们打球的时候,包括了4个特征(都是环境因素)以及他最终有木有去打球的数据。
第一个问题:大当家该怎么选?也就是我们的根节点用哪个特征呢?
一共有4个特征,看起来好像用谁都可以呀,这个时候就该比试比试了,看看谁的能力强(使得熵值能够下降的最多)
在历史数据中,首先我们可以算出来当前的熵值,计算公式同上等于0.940,大当家的竞选我们逐一来分析,先看outlook这个特征,上图给出了基于天气的划分之后的熵值,计算方式依旧同上,比如outlook=sunny时,yes有2个,no有三个这个时候熵就直接将2/5和3/5带入公式就好啦。最终算出来了3种情况下的熵值。
再继续来看!outlook取不同情况的概率也是不一样的,这个是可以计算出来的相当于先验概率了,直接可以统计出来的,这个也需要考虑进来的。然后outlook竞选大当家的分值就出来啦(就是信息增益)等于0.247。同样的方法其余3个特征的信息增益照样都可以计算出来,谁的信息增益多我们就认为谁是我们的大当家,这样就完成了根节点的选择,接下来二当家以此类推就可以了!
我们刚才给大家讲解的是经典的ID3算法,基于熵值来构造决策树,现在已经有很多改进,比如信息增益率和CART树。简单来说一下信息增益率吧,我们再来考虑另外一个因素,如果把数据的样本编号当成一个特征,那么这个特征必然会使得所有数据完全分的开,因为一个样本只对应于一个ID,这样的熵值都是等于零的,所以为了解决这类特征引入了信息增益率,不光要考虑信息增益还要考虑特征自身的熵值。说白了就是用 信息增益/自身的熵值 来当做信息增益率。
我们刚才讨论的例子中使用的是离散型的数据,那连续值的数据咋办呢?通常我们都用二分法来逐一遍历来找到最合适的切分点!
下面再来唠一唠决策树中的剪枝任务,为啥要剪枝呢?树不是好好的吗,剪个毛线啊!这个就是机器学习中老生常谈的一个问题了,过拟合的风险,说白了就是如果一个树足够庞大,那么所有叶子节点可能只是一个数据点(无限制的切分下去),这样会使得我们的模型泛化能力很差,在测试集上没办法表现出应有的水平,所以我们要限制决策树的大小,不能让枝叶太庞大了。
最常用的剪枝策略有两种:
(1)预剪枝:边建立决策树边开始剪枝的操作
(2)后剪枝:建立完之后根据一定的策略来修建
这些就是我们的决策树算法啦,其实还蛮好的理解的,从上到下基于一种选择标准(熵,GINI系数)来找到最合适的当家的就可以啦!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15