R语言之随机数与抽样模拟篇
句法是:runif(n,min=0,max=1) n表示生成的随机数数量,min表示均匀分布的下限,max表示均匀分布的上限;若省略参数min、max,则默认生成[0,1]上的均匀分布随机数。
例1:
> runif(5,0,1) # 生成5个[0,1]的均匀分布的随机数
[1] 0.5993 0.7391 0.2617 0.5077 0.7199
> runif(5) # 默认生成5个[0,1]上的均匀分布随机数
[1] 0.2784 0.7755 0.4107 0.8392 0.7455
例2
随机产生100个均匀分布随机数,作其概率直方图,再添加均匀分布的密度函数线,程序如下:
> x=runif(100)
> hist(x,prob=T,col=gray(.9),main="uniform on [0,1]")
> curve(dunif(x,0,1),add=T) #添加均匀分布的密度函数线
3.1.2 正态分布随机数
正态分布随机数的生成函数是 rnorm()
句法是:rnorm(n,mean=0,sd=1) 其中n表示生成的随机数数量,mean是正态分布的均值,默认为0,sd是正态分布的标准差,默认时为1;
例:
随机产生100个正态分布随机数,作其概率直方图,再添加正态分布的密度函数线
> x=rnorm(100)
> hist(x,prob=T,main="normal mu=0,sigma=1")
> curve(dnorm(x),add=T)
3.1.3 二项分布随机数
二项分布是指n次独立重复贝努力试验成功的次数的分布,每次贝努力试验的结果只有两个,成功和失败,记成功的概率为p
生成二项分布随机数的函数是:rbinom()
句法是:rbinom(n,size,prob) n表示生成的随机数数量,size表示进行贝努力试验的次数,prob表示一次贝努力试验成功的概率
例:
产生100个n为10,15,50,概率p为0.25的二项分布随机数:
> par(mfrow=c(1,3))
> p=0.25
> for( n in c(10,20,50))
{ x=rbinom(100,n,p)
hist(x,prob=T,main=paste("n =",n))
xvals=0:n
points(xvals,dbinom(xvals,n,p),type="h",lwd=3)
}
> par(mfrow=c(1,1))
3.1.4 指数分布随机数
R生成指数分布随机数的函数是:rexp()
其句法是:rexp(n,lamda=1) n表示生成的随机数个数,lamda=1/mean
例:
>x=rexp(100,1/10) # 生成100个均值为10的指数分布随机数
>hist(x,prob=T,col=gray(0.9),main=“均值为10的指数分布随机数”)
>curve(dexp(x,1/10),add=T) #添加指数分布密度线
3.1.5 常见的分布函数
产生分布的随机数,只需要在相应的分布前加r就行
表 3-1 常见分布函数表
分布 中文名称 R中的表达 参数
Beta 贝塔分布 beta(a,b) shape1, shape2
Binomial 二项分布 binom(n,p) size, prob
Cauchy 柯西分布 cauchy( ) location, scale Chi-square 卡方分布 chisq(df)
df Exponential 指数分布 exp(lamda) rate F F分布 f(df1,df2) df1
df2
Gamma 伽玛分布 gamma() shape rate
Geometric 几何分布 geom() prob Hypergeometric 超几何分布 hyper() m,n,k
Logistic 逻辑分布 logis() location scale
Negative binomial 负二项分布 nbinom() size prob
Normal 正态分布 norm() mean, sd Multivariate normal 多元正态分布 mvnorm() mean,cov
Poisson 泊松分布 pois() lambda T t 分布 t() df
Uniform 均匀分布 unif() min, max Weibull 威布儿分布 weibull() shape, scale
Wilcoxon 威尔考可森分布 wilcox() m, n
表 3-2 与分布相关的函数及代号
函数代号 函数作用
r- 生成相应分布的随机数
d- 生成相应分布的密度函数
p- 生成相应分布的累积概率密度函数
q- 生成相应分布的分位数函数
例:
dnorm表示正态分布密度函数
pnorm表示正态分布累积概率密度函数
qnorm表示正态分布分位数函数(即正态累积概率密度函数的逆函数)
3.2 随机抽样
3.2.1 放回与无放回抽样
R可以进行有放回、无放回抽样
sample()函数即可以实现
句法为:sample(x,n,replace=F,prob=NULL)
3.3 统计模拟
3.3.1 几种常见的模拟方法
1 中心极限定理:
2 二项分布模拟中心极限定理
3 用函数进行模拟
指定模拟次数m=100,样本量n=10,概率=0.25,如果要改变这些参数来重新进行模拟将会很麻烦,下面将展示如何将上面的程序形成一个模拟函数再进行模拟。
> sim.clt <- function (m=100,n=10,p=0.25)
{ z = rbinom(m,n,p)
x = (z-n*p)/sqrt(n*p*(1-p))
hist(x,prob=T,breaks=20,main=paste("n =",n,”p =”,p))
curve(dnorm(x),add=T)
}
> sim.clt() # 默认 m=100,n=10,p=0.25
> sim.clt(1000) # 取 m=1000,n=10,p=0.25
> sim.clt(1000,30) # 取 m=1000,n=30,p=0.25
> sim.clt(1000,30,0.5) # 取 m=1000,n=30,p=0.5
4 正态概率模拟
能比直方图更好判定随机数是否近似服从正态分布的是正态概率图。
其基本思想是:作实际数据的分位数与正态分布数据的分位数的散点图,也就是作样本分位数与理论分位数的散点图。
3.3.2 模拟函数的建立方法
若每次模拟都要编写一个循环,非常麻烦.
sim.fun()就是专门用来解决这类问题的
只需要编写一个用来生成随机数的函数,剩下的工作就交给sim.fun来完成
sim.fun <-function (m,f,...) # m 模拟样本次数,f需模拟的函数
{
sample <-1:m
for (i in 1:m) {
sample[i] <-f(...)
}
sample
}
例:
二项分布:
先编写一个函数用来生成一个二项分布随机的标准化值
>f<-function(n=10,p=0.5){s=rbinom(1,n,p);(s-n*p)/sqrt(n*p*(1-p)) }
> x=sim.fun(1000,f) # 模拟1000个二项随机数
> hist(x,prob=T)
均匀分布来模拟中心极限定理:
> f = function(n=10) (mean(runif(n)-1/2)/(1/sqrt(12*n))
> x=sim.fun(1000,f) # 模拟1000个均匀随机数
> hist(x,prob=T)
正态分布:
>f=function(n=10,mu=0,sigma=1){r=rnorm(n,mu,sigma);(mean(r)-m
u)/(sigma/sqrt(n)) }
> x = sim.fun(1000,f) #模拟1000个样本量为10的N(0,1)随机数
> hist(x,breaks=10,prob=T)
> x = sim.fun(1000,f,30,5,2) # 模拟1000个样本量为30的N(5,4)随机数
> hist(x,breaks=10,prob=T)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03