京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代群众工作面临的问题与对策
近年来,伴随“物联网”、“云计算”和“大数据”等词汇进入公众视野,一个大数据时代正大踏步向我们走来。在这一背景下,我们应如何创新社会管理方式、做好群众工作,是我们面临的重大课题。
大数据时代给群众工作带来的影响
所谓“大数据”,是指所涉及的信息量规模巨大到无法通过目前主流软件在合理时间内达到撷取、管理、处理、并整理成为帮助企业和其他组织决策更积极目的的资讯。其具有四个特点(即4V):“巨量”(Volume)、“高速”(Velocity)、“多样”(Variety)、“价值”(Value)。运用大数据,会增加工作量和工作难度,也能让群众工作更加快捷、精准。这主要表现在:一是便于管理部门“摸清家底”;二是有利于优化流程、提高效率;三是让民众享受更加高效、公正、透明的服务;四是可以提前感知和预测事件苗头及发展走势。可以说,大数据为群众工作提供了强大技术手段,它将在很大程度上改变群众工作和社会管理思路:从“模糊管理”向“数据管理”转变,由“经验治理”向“科学治理”迈进,实现“智能社会”、“智慧城市”。
大数据时代群众工作面临的主要问题
数据意识薄弱。一些管理者数据意识比较淡薄,缺乏“用数据决策、凭数据施政”理念。
数据政出多门。由于缺乏统筹规划,不少应用系统之间没有统一的技术和数据标准,数据不能自动传递,缺乏有效的关联和共享,从而形成“数据孤岛”。
数据安全欠缺。利用云计算对海量数据资源进行整合,使其从分散变得集中,增加了数据存储的安全风险。
数据人才匮乏。大数据是一个综合性课题,需要不同层级的人才,当前在党政机关比较匮乏。
做好大数据时代群众工作的几点建议
在“教育”上下功夫,培养数据意识和数据素养,为大数据时代的群众工作提供坚实思想保障。随着信息技术的飞速发展,具备良好数据意识和数据素养,将成为党政干部做好大数据时代群众工作的关键。首先,要把大数据专业知识列入各级党政干部教育培训和年度考核;其次,举办各类讲座和学术报告,普及大数据知识;第三,利用报刊、广播、电视和网络等媒体开辟专栏,宣传相关知识。
在“整合”上下功夫,实现数据互联互通和充分共享,为大数据时代的群众工作提供一流技术平台。应对大数据时代群众工作的需要,消除信息孤岛,实现数据的互联互通和充分共享,建设统一技术平台,显得格外迫切。一要坚持统一领导、统一规划、统一标准、统一建设;二要遵循以“需求为导向,应用促发展”的工作思路,推进信息共享、互联、互通平台建设与应用同步建设;三要采用国际先进的,符合我国信息化建设发展方向的、标准的、跨平台的信息技术。
在“防范”上下功夫,保护数据安全和公民隐私,为大数据时代的群众工作提供可靠网络环境。我们在实施社会管理、做好群众工作时,要特别注重对数据安全和公民个人隐私的保护。第一,将个人信息保护纳入国家战略资源的保护和规划范畴,保护公民隐私;第二,加快个人隐私保护立法,加大对侵害隐私等行为的打击力度;第三,加强对隐私保护行政监管,建立保护隐私测评机制;第四,加强对隐私权的技术保护,利用技术手段来保障公民隐私安全和合法权益。
在“创新”上下功夫,加强人才队伍建设,为大数据时代的群众工作提供优质智力支撑。没有一流的人才队伍,迎接大数据时代、做好大数据时代群众工作将成为一句空话。因此,开发和培养一支大数据人才队伍,不断提高群众工作的能力势在必行。一要设立专门的数据管理岗位,建立政府“首席信息官”制度;二要委托高校、科研院所和国际知名企业,“订单式”培养人才;三是利用“聘任制”,不断吸引体制外的专业人才进入党政机关,为大数据时代的群众工作提供智力支持和人才保障
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22