京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R中五种常用的统计分析方法
1、分组分析aggregation
根据分组字段,将分析对象划分为不同的部分,以进行对比分析各组之间差异性的一种分析方法。
常用统计指标:
计数 length
求和 sum
平均值 mean
标准差 var
方差 sd
分组统计函数
aggregate(分组表达式,data=需要分组的数据框,function=统计函数)
参数说明
formula:分组表达式,格式:统计列~分组列1+分组列2+...
data=需要分组的数据框
function:统计函数
aggregate(name ~ class, data=data, FUN=length);
#求和
aggregate(score ~ class, data=data, FUN=sum);
#均值
aggregate(score ~ class, data=data, FUN=mean);
#方差
aggregate(score ~ class, data=data, FUN=var);
#标准差
aggregate(score ~ class, data=data, FUN=sd)
2、分布分析cut
根据分析目的,将数据(定量数据)进行等距或者不等距的分组,进行研究各组分布规律的一种分析方法。
分组函数
cut(data,breaks,labels,right)
参数说明
data=需要分组的一列数据
breaks=分组条件,如果是一个数字,那么将平均分组;如果是一个数组,那么将按照指定范围分组
labels:分组标签
right:指定范围是否右闭合,默认为右闭合,right参数为TRUE
用户明细 <- read.csv('data.csv', stringsAsFactors=FALSE)
head(用户明细)
breaks <- c(min(用户明细$年龄)-1, 20, 30, 40, max(用户明细$年龄)+1)
年龄分组 <- cut(用户明细$年龄, breaks = breaks)
用户明细[, '年龄分组1'] <- 年龄分组
年龄分组 <- cut(用户明细$年龄, breaks = breaks, right = FALSE)
用户明细[, '年龄分组2'] <- 年龄分组
labels <- c('20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上');
年龄分组 <- cut(用户明细$年龄, breaks = breaks, labels = labels)
用户明细[, '年龄分组'] <- 年龄分组
head(用户明细)
aggregate(formula=用户ID ~ 年龄分组, data=用户明细, FUN=length)
3、交叉分析tapply(相当于excel里的数据透视表)
通常用于分析两个或两个以上,分组变量之间的关系,以交叉表形式进行变量间关系的对比分析;
交叉分析的原理就是从数据的不同维度,综合进行分组细分,以进一步了解数据的构成、分布特征。
交叉分析函数:
tapply(统计向量,list(数据透视表中的行,数据透视变中的列),FUN=统计函数)
返回值说明:
一个table类型的统计量
breaks <- c(min(用户明细$年龄)-1, 20, 30, 40, max(用户明细$年龄)+1)
labels <- c('20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上');
年龄分组 <- cut(用户明细$年龄, breaks = breaks, labels = labels)
用户明细[, '年龄分组'] <- 年龄分组
head(用户明细)
tapply(用户明细$用户ID, list(用户明细$年龄分组, 用户明细$性别), FUN=length)
4、结构分析prop.table
是在分组的基础上,计算各组成部分所占的比重,进而分析总体内部特征的一种分析方法。
for example:资产占有率就是一个非常经典的运用
统计占比函数
prop.table(table,margin=NULL)
参数说明:
table,使用tapply函数统计得到的分组计数或求和结果
margin,占比统计方式,具体参数如下:
属性注释
1按行统计占比
2按列统计占比
NULL按整体统计占比
data <- read.csv('data.csv', stringsAsFactors=FALSE);
head(data)
t <- tapply(data$月消费.元., list(data$通信品牌), sum)
t
prop.table(t);
t <- tapply(data$月消费.元., list(data$通信品牌), mean)
t
prop.table(t);
t <- tapply(data$月消费.元., list(data$省份, data$通信品牌), sum)
t
prop.table(t, margin = 2)
5、相关分析prop.table
是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,是研究随机变量之间的相关关系的一种统计方法。
相关系数r 可以用来描述定量变量之间的关系
相关分析函数:
cor(向量1,向量2,...)返回值:table类型的统计量
data <- read.csv('data.csv', fileEncoding = "UTF-8");
cor(data[, 2:7])
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27