SPSS详细教程:相对危险度(RR)的计算
一、问题与数据
研究者想探索吸烟与肺癌间的关联,即吸烟者患肺癌的风险是否比不吸烟者高以及高多少。研究者从一般人群中随机抽样700名调查对象建立前瞻性队列研究。调查对象的吸烟状态为吸烟或不吸烟。在研究开始时,所有调查对象均未患肺癌。研究者随访10年记录调查对象是否患肺癌。
因此,研究者可以分别得到患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数,据此可以计算吸烟组与不吸烟组的风险差异。
本例中代表吸烟状态的变量为smoking_status,吸烟赋值为1,不吸烟赋值为2;代表随访期肺癌发病与否的变量为lung_cancer,患肺癌赋值为1,未患肺癌赋值为2。
部分数据截图如下,左侧为原始数据,右侧为按不同吸烟状态和患肺癌与否统计的汇总数据。
二、对问题的分析
为计算相对危险度(RR),需要满足以下假设:
假设1:因变量和自变量均为二分类变量。
假设2:各观测间相互独立。
接下来将详细介绍如何计算相对危险度。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,则跳过数据准备步骤,直接计算相对危险度;如果使用按不同吸烟状态和患肺癌与否来统计得到汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 相对危险度的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量smoking_status选入Row(s)框,因变量lung_cancer选入Column(s)框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs:Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键,返回Crosstabs对话框。
(6)点击Cells键,出现Crosstabs:Cell Display对话框,如下图:
(7)勾选Percentanges区域的Row,如下图:
(8)点击Continue键,返回Crosstabs对话框。
(9)点击OK键,生成结果。
四、结果解释
1. 描述性统计分析
在报告相对危险度前,研究者应该先查看基本的一些统计量,了解数据特征。本例中在smoking_status*lung_cancer Crosstabulation表,如下图:
首先,表中可看到在350名吸烟者中患肺癌的人数,如下图高亮:
随访期间29名吸烟者患肺癌,即8.3%(29÷350*100%=8.3%)的吸烟者患肺癌。
注意:表中仅保留了一位小数,SPSS会自动计算相对危险度;如果研究者想得到更多小数位数手动计算的相对危险度,则双击smoking_status*lung_cancer Crosstabulation表,如下图。可观察到8.3%变为8.285714%。
其次,还能看到350名不吸烟者中患肺癌的人数,如下图:
随访期间9名不吸烟者患肺癌,即2.6%(9÷350*100%=2.6%)的不吸烟者患肺癌。研究者想得到更多小数位数手动计算的相对危险度,也可以如上操作,2.6%变为2.571429%,如下图:
从smoking_status*lung_cancer Crosstabulation表中可以得到初步结论:与不吸烟者相比,吸烟者患肺癌的风险更高。
研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。
当然,研究者也可以选择分别汇报患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数。
2. 相对危险度
相对危险度结果可以在Risk Table表中查看,如下图高亮显示。
注意:表中高亮显示的为“For cohort lung_cancer=Yes”行,不是“For cohort lung_cancer=No”,因为研究者感兴趣的是吸烟对患肺癌的影响。
吸烟者患肺癌的相对危险度是3.222,95%置信区间为1.548到6.707。95%置信区间说明研究者有95%的把握说明人群中真实的相对危险度在1.548和6.707间。
如果研究者手动计算相对危险度,则需要吸烟者患肺癌的比例即0.08285714和不吸烟者患肺癌的比例即0.02571429。将两个比例输入到相对危险度计算公式,如下图:
如果相对危险度大于1且95%置信区间不包括1,说明暴露组发生疾病的风险高于非暴露组,是结局的危险因素。本例中相对危险度3.222说明吸烟者患肺癌的风险高出不吸烟者222%。研究者还可以计算超额危险度,公式如下,其中RR为相对危险度。
本例中,超额危险度则为:
如果相对危险度小于1且95%置信区间不包括1,则意味着暴露组患病风险降低,是结局的保护因素。例如,相对危险度为0.34,代表与非暴露组相比,暴露组研究对象发生疾病的风险降低66%,计算如下。负号代表发生疾病的风险降低。
如果相对危险度的95%置信区间包括1,说明暴露组与非暴露组发生疾病的风险差异无统计学意义。
提示:研究者必须把自变量smoking_status选入Row(s),因变量lung_cancer选入Column(s)。如果选反,则会出现如下结果。
上表中相对危险度为1.574,95%置信区间上下限也分别变为1.297和1.910。因此,研究者需注意选对自变量和因变量。
综上,研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707)。
五、撰写结论
如果相对危险度95%置信区间不包括1,可以汇报:
本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707),且有统计学意义。
如果相对危险度95%置信区间包括1,可以汇报(另外列举一个例子):
有900名永久性房颤病人随机分配至两组,每组450名,一组使用降低脑卒中风险的新药,另外一组使用常规药物。使用新药的房颤病人中11人(2.4%)患脑卒中,使用常规药物病人24人(4.7%)患脑卒中。与使用常规药物的房颤病人相比,使用新药的病人患脑卒中的相对危险度为0.524(95%置信区间为0.256-1.074),没有统计学意义。
数据分析咨询请扫描二维码
在当今数据驱动的商业环境中,数据分析师扮演着至关重要的角色。他们帮助企业从大量数据中提取有用的洞察,从而推动决策制定和战 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,商务数据分析师扮演着至关重要的角色。作为联系业务需求与数据洞察之间的桥梁,数据分析师需要具备一系列技能 ...
2024-11-07在现代商业环境中,数据挖掘发挥着至关重要的作用。它不仅帮助企业从庞大的数据集中提取有价值的信息,还为企业的决策和业务运营 ...
2024-11-07数据分析可视化是一种通过图形化方式展现数据的技术,它使复杂的数据变得直观易懂,从而帮助我们更好地做出决策。在这个快速发展 ...
2024-11-07数据分析是一项至关重要的技能,尤其在当今数据驱动的世界中。Python以其强大的库和简单的语法成为了数据分析领域的佼佼者。本文 ...
2024-11-07在现代数据驱动的环境中,数据分析师扮演着至关重要的角色。他们需要掌握多种工具,以满足数据分析、处理和可视化的需求。无论是 ...
2024-11-07作为一名业务分析师,你将发现自己处于企业决策和数据驱动战略之间的桥梁位置。这个角色要求掌握一系列技能,以便有效地将数据转 ...
2024-11-07CDA中科院城市环境研究所(厦门)内训圆满成功 2017年9月12日-15日,CDA数据分析师在中科院城市环境研究所(厦门)进行了 ...
2024-11-07数据分析是现代商业和研究领域不可或缺的重要工具。无论是为了提高业务决策的准确性,还是为了发掘隐藏在数据中的潜在价值,了解 ...
2024-11-06数据分析是一个精细且有序的过程,旨在从海量数据中提取有用的信息,为决策提供有力支持。无论你是新手还是有经验的分析师,理解 ...
2024-11-06在当今竞争激烈的商业环境中,业务分析师(Business Analyst, BA)的角色变得愈加重要。随着企业对数据驱动决策的依赖加深,业务 ...
2024-11-06在现代信息技术的广阔世界中,大数据架构师扮演着至关重要的角色。他们不仅引领着企业的数据战略,还通过技术创新推动业务的不断 ...
2024-11-04在当今数字化时代,数据分析师已成为企业关键角色,帮助决策者通过数据驱动的洞察实现业务目标。成为一名成功的数据分析师,需要 ...
2024-11-03在当今数字化的世界中,数据分析已经成为推动商业决策的关键因素。随着公司和组织越来越依赖数据来驱动业务战略,对数据分析专 ...
2024-11-03《Python数据分析极简入门》 第2节 2 Pandas数据类型 Pandas 有两种自己独有的基本数据结构。需要注意的是,它固然有着两种数据 ...
2024-11-01《Python数据分析极简入门》 第2节 1 Pandas简介 说好开始学Python,怎么到了Pandas? 前面说过,既然定义为极简入门,我们只抓 ...
2024-10-31在当今数据驱动的世界中,数据科学与工程专业的重要性愈发凸显。无论是推动技术进步,还是在商业决策中提供精准分析,这一专业都 ...
2024-10-30在当今信息爆炸的时代,数据已成为企业决策和战略制定的核心资源。爬虫工程师因此成为数据获取和挖掘的关键角色。本文将详细介绍 ...
2024-10-30在当今数据驱动的世界中,数据分析是揭示商业洞察和推动决策的核心力量。选择合适的数据分析工具对于数据专业人士而言至关重要。 ...
2024-10-30