京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS详细教程:相对危险度(RR)的计算
一、问题与数据
研究者想探索吸烟与肺癌间的关联,即吸烟者患肺癌的风险是否比不吸烟者高以及高多少。研究者从一般人群中随机抽样700名调查对象建立前瞻性队列研究。调查对象的吸烟状态为吸烟或不吸烟。在研究开始时,所有调查对象均未患肺癌。研究者随访10年记录调查对象是否患肺癌。
因此,研究者可以分别得到患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数,据此可以计算吸烟组与不吸烟组的风险差异。
本例中代表吸烟状态的变量为smoking_status,吸烟赋值为1,不吸烟赋值为2;代表随访期肺癌发病与否的变量为lung_cancer,患肺癌赋值为1,未患肺癌赋值为2。
部分数据截图如下,左侧为原始数据,右侧为按不同吸烟状态和患肺癌与否统计的汇总数据。
二、对问题的分析
为计算相对危险度(RR),需要满足以下假设:
假设1:因变量和自变量均为二分类变量。
假设2:各观测间相互独立。
接下来将详细介绍如何计算相对危险度。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,则跳过数据准备步骤,直接计算相对危险度;如果使用按不同吸烟状态和患肺癌与否来统计得到汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 相对危险度的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量smoking_status选入Row(s)框,因变量lung_cancer选入Column(s)框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs:Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键,返回Crosstabs对话框。
(6)点击Cells键,出现Crosstabs:Cell Display对话框,如下图:
(7)勾选Percentanges区域的Row,如下图:
(8)点击Continue键,返回Crosstabs对话框。
(9)点击OK键,生成结果。
四、结果解释
1. 描述性统计分析
在报告相对危险度前,研究者应该先查看基本的一些统计量,了解数据特征。本例中在smoking_status*lung_cancer Crosstabulation表,如下图:
首先,表中可看到在350名吸烟者中患肺癌的人数,如下图高亮:
随访期间29名吸烟者患肺癌,即8.3%(29÷350*100%=8.3%)的吸烟者患肺癌。
注意:表中仅保留了一位小数,SPSS会自动计算相对危险度;如果研究者想得到更多小数位数手动计算的相对危险度,则双击smoking_status*lung_cancer Crosstabulation表,如下图。可观察到8.3%变为8.285714%。
其次,还能看到350名不吸烟者中患肺癌的人数,如下图:
随访期间9名不吸烟者患肺癌,即2.6%(9÷350*100%=2.6%)的不吸烟者患肺癌。研究者想得到更多小数位数手动计算的相对危险度,也可以如上操作,2.6%变为2.571429%,如下图:
从smoking_status*lung_cancer Crosstabulation表中可以得到初步结论:与不吸烟者相比,吸烟者患肺癌的风险更高。
研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。
当然,研究者也可以选择分别汇报患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数。
2. 相对危险度
相对危险度结果可以在Risk Table表中查看,如下图高亮显示。
注意:表中高亮显示的为“For cohort lung_cancer=Yes”行,不是“For cohort lung_cancer=No”,因为研究者感兴趣的是吸烟对患肺癌的影响。
吸烟者患肺癌的相对危险度是3.222,95%置信区间为1.548到6.707。95%置信区间说明研究者有95%的把握说明人群中真实的相对危险度在1.548和6.707间。
如果研究者手动计算相对危险度,则需要吸烟者患肺癌的比例即0.08285714和不吸烟者患肺癌的比例即0.02571429。将两个比例输入到相对危险度计算公式,如下图:
如果相对危险度大于1且95%置信区间不包括1,说明暴露组发生疾病的风险高于非暴露组,是结局的危险因素。本例中相对危险度3.222说明吸烟者患肺癌的风险高出不吸烟者222%。研究者还可以计算超额危险度,公式如下,其中RR为相对危险度。
本例中,超额危险度则为:
如果相对危险度小于1且95%置信区间不包括1,则意味着暴露组患病风险降低,是结局的保护因素。例如,相对危险度为0.34,代表与非暴露组相比,暴露组研究对象发生疾病的风险降低66%,计算如下。负号代表发生疾病的风险降低。
如果相对危险度的95%置信区间包括1,说明暴露组与非暴露组发生疾病的风险差异无统计学意义。
提示:研究者必须把自变量smoking_status选入Row(s),因变量lung_cancer选入Column(s)。如果选反,则会出现如下结果。
上表中相对危险度为1.574,95%置信区间上下限也分别变为1.297和1.910。因此,研究者需注意选对自变量和因变量。
综上,研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707)。
五、撰写结论
如果相对危险度95%置信区间不包括1,可以汇报:
本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707),且有统计学意义。
如果相对危险度95%置信区间包括1,可以汇报(另外列举一个例子):
有900名永久性房颤病人随机分配至两组,每组450名,一组使用降低脑卒中风险的新药,另外一组使用常规药物。使用新药的房颤病人中11人(2.4%)患脑卒中,使用常规药物病人24人(4.7%)患脑卒中。与使用常规药物的房颤病人相比,使用新药的病人患脑卒中的相对危险度为0.524(95%置信区间为0.256-1.074),没有统计学意义。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05