
SPSS详细教程:相对危险度(RR)的计算
一、问题与数据
研究者想探索吸烟与肺癌间的关联,即吸烟者患肺癌的风险是否比不吸烟者高以及高多少。研究者从一般人群中随机抽样700名调查对象建立前瞻性队列研究。调查对象的吸烟状态为吸烟或不吸烟。在研究开始时,所有调查对象均未患肺癌。研究者随访10年记录调查对象是否患肺癌。
因此,研究者可以分别得到患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数,据此可以计算吸烟组与不吸烟组的风险差异。
本例中代表吸烟状态的变量为smoking_status,吸烟赋值为1,不吸烟赋值为2;代表随访期肺癌发病与否的变量为lung_cancer,患肺癌赋值为1,未患肺癌赋值为2。
部分数据截图如下,左侧为原始数据,右侧为按不同吸烟状态和患肺癌与否统计的汇总数据。
二、对问题的分析
为计算相对危险度(RR),需要满足以下假设:
假设1:因变量和自变量均为二分类变量。
假设2:各观测间相互独立。
接下来将详细介绍如何计算相对危险度。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,则跳过数据准备步骤,直接计算相对危险度;如果使用按不同吸烟状态和患肺癌与否来统计得到汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 相对危险度的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量smoking_status选入Row(s)框,因变量lung_cancer选入Column(s)框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs:Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键,返回Crosstabs对话框。
(6)点击Cells键,出现Crosstabs:Cell Display对话框,如下图:
(7)勾选Percentanges区域的Row,如下图:
(8)点击Continue键,返回Crosstabs对话框。
(9)点击OK键,生成结果。
四、结果解释
1. 描述性统计分析
在报告相对危险度前,研究者应该先查看基本的一些统计量,了解数据特征。本例中在smoking_status*lung_cancer Crosstabulation表,如下图:
首先,表中可看到在350名吸烟者中患肺癌的人数,如下图高亮:
随访期间29名吸烟者患肺癌,即8.3%(29÷350*100%=8.3%)的吸烟者患肺癌。
注意:表中仅保留了一位小数,SPSS会自动计算相对危险度;如果研究者想得到更多小数位数手动计算的相对危险度,则双击smoking_status*lung_cancer Crosstabulation表,如下图。可观察到8.3%变为8.285714%。
其次,还能看到350名不吸烟者中患肺癌的人数,如下图:
随访期间9名不吸烟者患肺癌,即2.6%(9÷350*100%=2.6%)的不吸烟者患肺癌。研究者想得到更多小数位数手动计算的相对危险度,也可以如上操作,2.6%变为2.571429%,如下图:
从smoking_status*lung_cancer Crosstabulation表中可以得到初步结论:与不吸烟者相比,吸烟者患肺癌的风险更高。
研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。
当然,研究者也可以选择分别汇报患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数。
2. 相对危险度
相对危险度结果可以在Risk Table表中查看,如下图高亮显示。
注意:表中高亮显示的为“For cohort lung_cancer=Yes”行,不是“For cohort lung_cancer=No”,因为研究者感兴趣的是吸烟对患肺癌的影响。
吸烟者患肺癌的相对危险度是3.222,95%置信区间为1.548到6.707。95%置信区间说明研究者有95%的把握说明人群中真实的相对危险度在1.548和6.707间。
如果研究者手动计算相对危险度,则需要吸烟者患肺癌的比例即0.08285714和不吸烟者患肺癌的比例即0.02571429。将两个比例输入到相对危险度计算公式,如下图:
如果相对危险度大于1且95%置信区间不包括1,说明暴露组发生疾病的风险高于非暴露组,是结局的危险因素。本例中相对危险度3.222说明吸烟者患肺癌的风险高出不吸烟者222%。研究者还可以计算超额危险度,公式如下,其中RR为相对危险度。
本例中,超额危险度则为:
如果相对危险度小于1且95%置信区间不包括1,则意味着暴露组患病风险降低,是结局的保护因素。例如,相对危险度为0.34,代表与非暴露组相比,暴露组研究对象发生疾病的风险降低66%,计算如下。负号代表发生疾病的风险降低。
如果相对危险度的95%置信区间包括1,说明暴露组与非暴露组发生疾病的风险差异无统计学意义。
提示:研究者必须把自变量smoking_status选入Row(s),因变量lung_cancer选入Column(s)。如果选反,则会出现如下结果。
上表中相对危险度为1.574,95%置信区间上下限也分别变为1.297和1.910。因此,研究者需注意选对自变量和因变量。
综上,研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707)。
五、撰写结论
如果相对危险度95%置信区间不包括1,可以汇报:
本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707),且有统计学意义。
如果相对危险度95%置信区间包括1,可以汇报(另外列举一个例子):
有900名永久性房颤病人随机分配至两组,每组450名,一组使用降低脑卒中风险的新药,另外一组使用常规药物。使用新药的房颤病人中11人(2.4%)患脑卒中,使用常规药物病人24人(4.7%)患脑卒中。与使用常规药物的房颤病人相比,使用新药的病人患脑卒中的相对危险度为0.524(95%置信区间为0.256-1.074),没有统计学意义。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
剖析 CDA 数据分析师考试题型:解锁高效备考与答题策略 CDA(Certified Data Analyst)数据分析师考试作为衡量数据专业能力的 ...
2025-07-04SQL Server 字符串截取转日期:解锁数据处理的关键技能 在数据处理与分析工作中,数据格式的规范性是保证后续分析准确性的基础 ...
2025-07-04CDA 数据分析师视角:从数据迷雾中探寻商业真相 在数字化浪潮席卷全球的今天,数据已成为企业决策的核心驱动力,CDA(Certifie ...
2025-07-04CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26