
SPSS详细教程:相对危险度(RR)的计算
一、问题与数据
研究者想探索吸烟与肺癌间的关联,即吸烟者患肺癌的风险是否比不吸烟者高以及高多少。研究者从一般人群中随机抽样700名调查对象建立前瞻性队列研究。调查对象的吸烟状态为吸烟或不吸烟。在研究开始时,所有调查对象均未患肺癌。研究者随访10年记录调查对象是否患肺癌。
因此,研究者可以分别得到患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数,据此可以计算吸烟组与不吸烟组的风险差异。
本例中代表吸烟状态的变量为smoking_status,吸烟赋值为1,不吸烟赋值为2;代表随访期肺癌发病与否的变量为lung_cancer,患肺癌赋值为1,未患肺癌赋值为2。
部分数据截图如下,左侧为原始数据,右侧为按不同吸烟状态和患肺癌与否统计的汇总数据。
二、对问题的分析
为计算相对危险度(RR),需要满足以下假设:
假设1:因变量和自变量均为二分类变量。
假设2:各观测间相互独立。
接下来将详细介绍如何计算相对危险度。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,则跳过数据准备步骤,直接计算相对危险度;如果使用按不同吸烟状态和患肺癌与否来统计得到汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 相对危险度的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量smoking_status选入Row(s)框,因变量lung_cancer选入Column(s)框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs:Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键,返回Crosstabs对话框。
(6)点击Cells键,出现Crosstabs:Cell Display对话框,如下图:
(7)勾选Percentanges区域的Row,如下图:
(8)点击Continue键,返回Crosstabs对话框。
(9)点击OK键,生成结果。
四、结果解释
1. 描述性统计分析
在报告相对危险度前,研究者应该先查看基本的一些统计量,了解数据特征。本例中在smoking_status*lung_cancer Crosstabulation表,如下图:
首先,表中可看到在350名吸烟者中患肺癌的人数,如下图高亮:
随访期间29名吸烟者患肺癌,即8.3%(29÷350*100%=8.3%)的吸烟者患肺癌。
注意:表中仅保留了一位小数,SPSS会自动计算相对危险度;如果研究者想得到更多小数位数手动计算的相对危险度,则双击smoking_status*lung_cancer Crosstabulation表,如下图。可观察到8.3%变为8.285714%。
其次,还能看到350名不吸烟者中患肺癌的人数,如下图:
随访期间9名不吸烟者患肺癌,即2.6%(9÷350*100%=2.6%)的不吸烟者患肺癌。研究者想得到更多小数位数手动计算的相对危险度,也可以如上操作,2.6%变为2.571429%,如下图:
从smoking_status*lung_cancer Crosstabulation表中可以得到初步结论:与不吸烟者相比,吸烟者患肺癌的风险更高。
研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。
当然,研究者也可以选择分别汇报患肺癌的吸烟者、未患肺癌的吸烟者、患肺癌的不吸烟者和未患肺癌的不吸烟者的人数。
2. 相对危险度
相对危险度结果可以在Risk Table表中查看,如下图高亮显示。
注意:表中高亮显示的为“For cohort lung_cancer=Yes”行,不是“For cohort lung_cancer=No”,因为研究者感兴趣的是吸烟对患肺癌的影响。
吸烟者患肺癌的相对危险度是3.222,95%置信区间为1.548到6.707。95%置信区间说明研究者有95%的把握说明人群中真实的相对危险度在1.548和6.707间。
如果研究者手动计算相对危险度,则需要吸烟者患肺癌的比例即0.08285714和不吸烟者患肺癌的比例即0.02571429。将两个比例输入到相对危险度计算公式,如下图:
如果相对危险度大于1且95%置信区间不包括1,说明暴露组发生疾病的风险高于非暴露组,是结局的危险因素。本例中相对危险度3.222说明吸烟者患肺癌的风险高出不吸烟者222%。研究者还可以计算超额危险度,公式如下,其中RR为相对危险度。
本例中,超额危险度则为:
如果相对危险度小于1且95%置信区间不包括1,则意味着暴露组患病风险降低,是结局的保护因素。例如,相对危险度为0.34,代表与非暴露组相比,暴露组研究对象发生疾病的风险降低66%,计算如下。负号代表发生疾病的风险降低。
如果相对危险度的95%置信区间包括1,说明暴露组与非暴露组发生疾病的风险差异无统计学意义。
提示:研究者必须把自变量smoking_status选入Row(s),因变量lung_cancer选入Column(s)。如果选反,则会出现如下结果。
上表中相对危险度为1.574,95%置信区间上下限也分别变为1.297和1.910。因此,研究者需注意选对自变量和因变量。
综上,研究者可以汇报:本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707)。
五、撰写结论
如果相对危险度95%置信区间不包括1,可以汇报:
本研究随机抽样700名调查对象,吸烟者和不吸烟者各350名,吸烟者患肺癌的比例(8.3%)高于不吸烟者(2.6%)。与不吸烟者相比,吸烟者患肺癌的相对危险度为3.222(95%置信区间为1.548-6.707),且有统计学意义。
如果相对危险度95%置信区间包括1,可以汇报(另外列举一个例子):
有900名永久性房颤病人随机分配至两组,每组450名,一组使用降低脑卒中风险的新药,另外一组使用常规药物。使用新药的房颤病人中11人(2.4%)患脑卒中,使用常规药物病人24人(4.7%)患脑卒中。与使用常规药物的房颤病人相比,使用新药的病人患脑卒中的相对危险度为0.524(95%置信区间为0.256-1.074),没有统计学意义。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~
免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25评估模型预测为正时的准确性 在机器学习与数据科学领域,模型预测的准确性是衡量其性能优劣的核心指标。尤其是当模型预测结 ...
2025-06-25CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-06-24金融行业的大数据变革:五大应用案例深度解析 在数字化浪潮中,金融行业正经历着深刻的变革,大数据技术的广泛应用 ...
2025-06-24Power Query 中实现移动加权平均的详细指南 在数据分析和处理中,移动加权平均是一种非常有用的计算方法,它能够根据不同数据 ...
2025-06-24数据驱动营销革命:解析数据分析在网络营销中的核心作用 在数字经济蓬勃发展的当下,网络营销已成为企业触达消费者 ...
2025-06-23随机森林模型与 OPLS-DA 的优缺点深度剖析 在数据分析与机器学习领域,随机森林模型与 OPLS-DA(正交偏最小二乘法判 ...
2025-06-23CDA 一级:开启数据分析师职业大门的钥匙 在数字化浪潮席卷全球的今天,数据已成为企业发展和决策的核心驱动力,数据分析师 ...
2025-06-23透视表内计算两个字段乘积的实用指南 在数据处理与分析的过程中,透视表凭借其强大的数据汇总和整理能力,成为了众多数据工 ...
2025-06-20CDA 一级考试备考时长全解析,助你高效备考 CDA(Certified Data Analyst)一级认证考试,作为数据分析师领域的重要资格认证, ...
2025-06-20统计学模型:解锁数据背后的规律与奥秘 在数据驱动决策的时代,统计学模型作为挖掘数据价值的核心工具,发挥着至关重要的作 ...
2025-06-20Logic 模型特征与选择应用:构建项目规划与评估的逻辑框架 在项目管理、政策制定以及社会服务等领域,Logic 模型(逻辑模型 ...
2025-06-19SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的利器 在数据分析的众多方法中,Mann-Kendall(MK)检验凭借其对数据分 ...
2025-06-19