
SPSS详细教程:OR值的计算
一、问题与数据
研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异。研究者从学习运动医学的学生中随机招募50名学生,记录性别并询问他们喜欢竞技类还是娱乐性活动,通过计算比值比来探索这一差异。
性别变量为gender,男性赋值为1,女性赋值为2;喜欢竞技类运动的变量为comp,是赋值为1,否(即喜欢休闲类运动)赋值为2。部分数据如下图显示,左图为原始数据,右图为按性别和喜欢竞技类运动与否统计的汇总数据。
二、对问题的分析
为计算比值比,需要满足以下两个假设:
1. 假设1:自变量和因变量均为二分类变量。
2. 假设2:观测间相互独立。
接下来,将介绍计算比值比的SPSS操作。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,跳过数据准备步骤,直接计算比值比;如果使用按性别和喜欢竞技类运动与否统计的汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 比值比的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量gender选入Row(s):框,因变量comp选入Column(s):框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键。
(6)点击OK键,生成结果。
四、结果解释
1. 描述性分析
在报告比值比前,研究者应该先查看基本的一些统计量,了解数据特征。本例查看gender*comp Crosstabulation表,如下图:
表中可看到50名研究对象中男性和女性各25人。首先,查看男性喜欢竞技类运动的比值,如下图高亮显示:
25名男性中,18名男性喜欢竞技类运动,7名不喜欢(即喜欢娱乐性运动)。因此,男性喜欢竞技类运动的比值为喜欢与不喜欢的概率之比,即为喜欢竞技类运动的男性数量除以不喜欢的男性数量,得到比值为2.57(18÷7=2.57)。因此对男性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的两倍多。
同理,也可以得到女性的比值。下表中为25名女性喜欢竞技类运动的情况:
25名女性中10名喜欢竞技类运动,15名不喜欢。因此女性喜欢竞技类运动的比值为为喜欢竞技类运动的女性数量除以不喜欢的女性数量,得到比值为0.67(10÷15=0.67)。因此对女性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的0.67倍。
因此,研究者可以汇报:“本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动”。
2. 比值比
观察Risk Estimate表可以得到比值比,如下图:
性别与喜欢竞技类运动与否的比值比为3.857,95%置信区间为1.180到12.606。95%置信区间代表研究者有95%的把握确定人群中这一关联的真实比值比在1.180到12.606之间。此外,比值比还可以通过gender*comp Cross tabulation表的两个比值手动算出。
计算性别与喜欢竞技类运动与否的比值比,仅需要用男性的比值除以女性的比值,如下面算式。因此,男性喜欢竞技类运动的可能性是女性3.857倍。
如果比值比大于1且95%置信区间不包括1,代表男性喜欢竞技类运动的可能性大于女性;反之,比值比小于1且95%置信区间不包括1,则代表男性喜欢竞技类运动的可能性小于女性;若比值比的95%置信区间包括1,则说明男女性喜欢竞技类运动的可能性无统计学差异。
五、撰写结论
本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动。与女性相比,男性喜欢竞技类运动的比值比是3.857(95%置信区间:1.180-12.606),且有统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13