
SPSS详细教程:OR值的计算
一、问题与数据
研究者想要探索人群中不同性别者喜欢竞技类或娱乐性体育活动是否有差异。研究者从学习运动医学的学生中随机招募50名学生,记录性别并询问他们喜欢竞技类还是娱乐性活动,通过计算比值比来探索这一差异。
性别变量为gender,男性赋值为1,女性赋值为2;喜欢竞技类运动的变量为comp,是赋值为1,否(即喜欢休闲类运动)赋值为2。部分数据如下图显示,左图为原始数据,右图为按性别和喜欢竞技类运动与否统计的汇总数据。
二、对问题的分析
为计算比值比,需要满足以下两个假设:
1. 假设1:自变量和因变量均为二分类变量。
2. 假设2:观测间相互独立。
接下来,将介绍计算比值比的SPSS操作。
三、SPSS操作
1. 数据准备
如果研究者使用原始数据,跳过数据准备步骤,直接计算比值比;如果使用按性别和喜欢竞技类运动与否统计的汇总数据,则需要添加权重,步骤如下。
(1)点击主菜单Data > Weight Cases,如下图:
点击后出现Weight Cases对话框,如下图:
(2)勾选Weight cases by选项,激活 键和Frequency Variable: 框,如下图:
(3)将变量freq选入Frequency Variable框,如下图:
(4)点击OK键,为数据加权。
2. 比值比的SPSS操作
(1)点击主菜单Analyze > Descriptive Statistics > Crosstabs,如下图:
点击后出现Crosstabs对话框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(2)将自变量gender选入Row(s):框,因变量comp选入Column(s):框,如下图:
注意:如果使用频数统计的数据文件,Crosstabs对话框如下图:
(3)点击Statistics键,出现Crosstabs Statistics对话框,如下图:
(4)勾选Risk,如下图:
(5)点击Continue键。
(6)点击OK键,生成结果。
四、结果解释
1. 描述性分析
在报告比值比前,研究者应该先查看基本的一些统计量,了解数据特征。本例查看gender*comp Crosstabulation表,如下图:
表中可看到50名研究对象中男性和女性各25人。首先,查看男性喜欢竞技类运动的比值,如下图高亮显示:
25名男性中,18名男性喜欢竞技类运动,7名不喜欢(即喜欢娱乐性运动)。因此,男性喜欢竞技类运动的比值为喜欢与不喜欢的概率之比,即为喜欢竞技类运动的男性数量除以不喜欢的男性数量,得到比值为2.57(18÷7=2.57)。因此对男性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的两倍多。
同理,也可以得到女性的比值。下表中为25名女性喜欢竞技类运动的情况:
25名女性中10名喜欢竞技类运动,15名不喜欢。因此女性喜欢竞技类运动的比值为为喜欢竞技类运动的女性数量除以不喜欢的女性数量,得到比值为0.67(10÷15=0.67)。因此对女性来讲,喜欢竞技类运动的概率是喜欢娱乐性运动概率的0.67倍。
因此,研究者可以汇报:“本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动”。
2. 比值比
观察Risk Estimate表可以得到比值比,如下图:
性别与喜欢竞技类运动与否的比值比为3.857,95%置信区间为1.180到12.606。95%置信区间代表研究者有95%的把握确定人群中这一关联的真实比值比在1.180到12.606之间。此外,比值比还可以通过gender*comp Cross tabulation表的两个比值手动算出。
计算性别与喜欢竞技类运动与否的比值比,仅需要用男性的比值除以女性的比值,如下面算式。因此,男性喜欢竞技类运动的可能性是女性3.857倍。
如果比值比大于1且95%置信区间不包括1,代表男性喜欢竞技类运动的可能性大于女性;反之,比值比小于1且95%置信区间不包括1,则代表男性喜欢竞技类运动的可能性小于女性;若比值比的95%置信区间包括1,则说明男女性喜欢竞技类运动的可能性无统计学差异。
五、撰写结论
本研究招募了50名研究对象,男女性各25人。与娱乐性运动(n=7)相比,男性更喜欢竞技类运动(n=18);在女性中则相反,10名女性喜欢竞技类运动、15名女性喜欢娱乐性运动。与女性相比,男性喜欢竞技类运动的比值比是3.857(95%置信区间:1.180-12.606),且有统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08