京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据兴起 重复数据删除4项注意
根据全球市场的反馈来看,IT技术推动公司的历程性进步,继续着信息革命时代的传奇。重复数据删除技术目前已成为存储行业最为热门的技术,不仅众多厂商极力推荐其重复数据删除产品,广大用户也在热切的关注着重复数据删除技术。
从全球企业界兴起的这种热闹局面,主要是由当前经济大环境不景气的外部原因,以及企业自身数据飞速增长的内部原因共同形成。作为重复数据删除产品越来越受用户关注的同时,其功能作用也被过分的放大,成为厂商推销其产品的卖点和噱头。就此问题,用户在选择重复数据删除产品时还需要谨慎起见。
重复数据删除对你是否有意义?
那用户首先需要问自己的就是是否真的需要重复数据删除技术。就目前的一些调查情况来看:一些类似医疗影像处理的数据并不适合进行重复数据删除,另外金融、电信等对数据可靠性要求比较高的行业对重复数据删除也需要谨慎对待。用户如果赶时髦、追潮流,不考虑自身企业的数据情况,购买重复数据删除产品只能取得适得其反的结果。
事实上,这种只保存数据单一实例的技术早已存在,只是在备份领域中才被突显出来,并定名为重复数据删除。正是由于企业在备份过程中存储了大量的重复数据、浪费了大量存储空间,最终才催化出重复数据删除技术。重复数据删除的宗旨就是为企业用户的备份解决方案服务,使得企业备份解决方案更加完善、高效。如果脱离这个宗旨,厂商一味强调重复数据删除的一些优点,却忽视企业在数据安全性和备份等方面可能做出的巨大牺牲,那么毫无疑问,这种本末倒置的作法最终受害的将是用户。
因此,用户在选购重复数据删除产品时需要思考重复数据删除是否对你有意义?你的企业是否真的需要重复数据删除?如果厂商不顾你的现实情况,不负责任的向你推销其重复数据删除产品,那么恭喜你,你遇到“骗子”了……
重复数据删除对现有备份环境是否造成影响?影响有多大?
企业用户备份做两次全备份时间间隔一般不长,通常只有不超过5%的数据是不同的,剩余大部分数据都是相同的,因此,重复数据删除绝对可以给企业备份系统带来很大的好处。从而衍生出这样一个问题:重复数据删除是否会对企业现有备份环境造成影响?可能会造成什么样的影响?这种影响有多大?
如果你的备份环境已经有比较长的时间了,各项备份机制都趋于完善,这个时候你应该考虑加入重复数据删除解决方案。那么你要选择什么样的重复数据删除产品呢?是选择在线处理方式(In-line)的重复数据删除产品,还是选择后处理方式(Post-Processing)的重复数据删除产品呢?这里需要告诫你的是:In-line方式可能并不适合你当前的备份环境。因为In-line方式可能给你的备份环境带来很大的改变,不仅可能你的备份软件需要升级、备份设备需要更换,还可能出现备份机制、备份习惯的通通改变。更有可能出现,改变现有备份环境会使备份处理的速度变的很慢,甚至引发无法预计且不可恢复的数据丢失。所以如果用户不仔细考虑重复数据删除产品对现有备份环境的影响,则很可能将已有的备份环境做出巨大改变,而这种巨大的改变也犯了IT建设之大忌。
因此,用户在选购重复数据删除产品之前必须对所选产品对现有备份环境的影响进行评估,尽量选择那些对已有备份环境没有影响的产品。
单一不重复数据的安全性该如何保障?
当用户选择好重复数据删除产品进行重复数据删除操作后会猛然发现这么一个问题:进行完重复数据删除后,我的数据只剩下单一不重复数据,更为要命的是单一不重复数据是集中保存在一个存储区域中。单一不重复数据的安全性瞬间就成为用户最为棘手问题,用户会发现自己把宝都押在同一个地方,仿佛就是把所有鸡蛋都放在了同一个篮子里。这时候,VTL在重复数据删除解决方案中的重要性就显现出来了。用户可以在VTL中再拷贝一份单一不重复数据,还可以通过远程镜像技术将数据镜像到不同地域的不同存储设备上。另外,还可以通过这种高可用性(HA)架构来消除单点故障(SPOF),提高VTL系统自身的高可靠性,使整个备份系统更安全。
你想把自己所有鸡蛋都放在一个篮子里,然后终日过着如履薄冰、胆战心惊、诚惶诚恐的日子吗?如果不想,那么请你在选择重复数据删除解决方案时,仔细思考一下单一不重复数据安全的安全性问题!如果厂商解决方案不能够很好解决这个重要问题,毫无疑问的恭喜你,你可能又遇到一个“大忽悠”!
扩展性与成本对于重复数据删除技术很重要吗?
用户选择了重复数据删除技术并不意味着以后就万事大吉,数据量该增长还得增长,存储容量该增加还得增加,用户还得去面对存储解决方案可扩展性的问题。
从长远的角度来看,单台重复数据删除设备根本无法满足企业的需求,企业将来也必然会面对多台重复数据删除设备,这就凸现出下面的情况:企业考虑用多台重复数据删除设备来完成备份,那么每台重复数据删除设备能否识别自身已备份的数据在其他设备上是否也已经备份了?出现这种情况是否会影响到整个备份系统的重复数据删除比?是否会增加维护的难度?
因此企业将来面对的集群架构必须具有良好的扩展能力和集群式的重复数据删除技术。集群架构应该是通过统一性的添加VTL节点来扩展,还需要能够做到任意时间添加存储而不出现中断处理的情况。只有这样才能够具有最优的管理能力和扩展能力。如果厂商不能够提供很好的扩展方案,那么极易形成备份孤岛,那时,用户的设备采购成本、管理复杂性和管理成本都将加大的增加。
综上所述,用户选购重复数据删除产品时,应该以正确的心态去面对它,本文上面提到重复数据删除产品选购四大注意事项:重复数据删除是否对你有意义、重复数据删除对现有备份环境有多大影响、重复数据安全性如何保障、重复数据删除的扩展性和成本,正是从用户自身角度来看待重复数据删除产品。专家表示,相信用户只要很好的遵循这四个角度去选购重复数据删除产品,一定能够选购到最适合自己的产品,也一定能够让用户的备份环境得到更好的优化。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22