京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,看“小数据”如何支持决策
大数据被炒得火热,“小数据”的重要性也不能忽视,“小数据”并不是说数据量小,而是指有针对性的、可用于支持决策的高质量数据,不需要复杂的算法、昂贵的硬件、高额的费用,任何组织、企业甚至个人都可以实现对“小数据”的分析和管理。学会简单的算法,利用好“小数据”,人人都可以成为“数据科学家”。全球著名咨询公司Booz & Company合伙人David Meer为我们解读“小数据”的妙用。
以下为译文:
回想起我在JWT广告公司工作的时候,我们的一位客户——一名美国海军陆战队上校——说了一件一直困扰我的事情。“你想想,”他说,“如果我在战场上坚守一个山头,这时我得到一份情报,即使我不能确定它100%准确,我也会基于那份情报做决定。”他的观点是有情报总比没有好——如果仅仅因为情报不确定就忽视它,那你就太傻了。
当然,关于大数据是否真的能给公司带来更大的客户洞察力和运营效率,有很大的争议。但很多公司(可能不是大多数),在新兴市场、B2B工业、高度专业化或集中市场等数据相对较少的环境中运作。这些公司对我所说的“小数据”一定会满意的。对他们来说,上校的话比最新数据挖掘算法或公共讲座更能产生共鸣。
在我最近一篇博客中,我提出一个观点:大数据的含义已经不仅仅是新的数据源、分析技术和科技,而是一种范式转变——从基于直觉的管理向数据驱动决策转变——这种转变已经开始,而且越来越快。对于公司在没有完整干净市场数据的情况下经营,这意味着需要尽力更好地利用对他们有用的数据(这些数据或许并不完美),或使用低成本方法来创建新的数据。
下面是几个成功的案例:
一家工业涂料制造商按照客户和区域差别定价,所以它不能使用经典回归分析方法建立稳定的价格弹性模型。然而,通过使用其他的分析技术,该公司能够确定具体的领域,以提高定价和服务政策。它转向基于价值的定价方法以确保其最有价值的客户得到最高级别服务。仅仅在一个地区的一个业务单元中实施,就使销售额上升了4%。
一大型饮料制造商想要提升其酒吧、餐馆和娱乐场所的营业额。可用的联合信息基于一个标准细分计划,没有能够足够深入了解如何为不同阶层服务。该公司用观测研究定义更多可操作的部分,但需要一种方法来量化分割。它基于可观察到的特征开发了一个算法,然后用一个经典的小数据技术,要求专业销售人员基于算法对他们负责的区域内酒吧和餐馆进行划分。定制产品的分类、定价,和为每个主要阶段制定市场营销计划。在两个大城市试点项目的销售总额和市场份额有了显著的提升,目前已经在全国范围内推广。
区域健康保险公司试图在卓越的客户体验上使自己脱颖而出,意识到其电话中心是关于客户痛点及解决方案的一个潜在数据来源。该公司采取了来电评分单,不仅仅是客服代表输入的摘要,还可以应用文本挖掘算法。它能够改进书面通信的格式和语言、简化电话中心服务流程。此外,该公司发现了可以在某些社区介绍店面位置,以方便客户交互,提高用户忠诚度。
中国大家电巨头海尔使用服务技术人员收集到的信息推动创新。例如,一些技术人员发现农村客户用其洗衣机来洗菜,导致洗衣机堵塞。海尔利用此信息开发了一种新型的洗衣机,该公司表示,“主要是用于洗衣服、甜土豆和花生。”
这些例子中没有一个涉及昂贵的硬件、软件或技术设备。数据采集费用低,在某些情况下,根本不用花钱。
利用这种数据需要的是一点点创造力和边干边学的意愿。选择一个产品、一个地区和一个需要注意的问题,运行一个试点项目。用这种方法,你可以向自己以及组织中其他人展示努力的回报,成本也控制在合理的范围。据我了解一旦公司开始在数据分析中投资,他们几乎从来不会停止,因为他们在业务中了解到的事情带来的收益远高于分析成本。数据分析产生的收益已经足够维持自身的发展了。高管可以深入了解怎样提高自己的竞争地位,或者要把数据分析应用到海军陆战队上校可能需要的地方——确定什么时候可以攻上山头进行突袭。很难为这样的“小数据”贴上价格标签。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15