Python数据分析:股价相关性
为什么要分析股价相关度呢,我们来引入一个概念——配对交易
所谓的配对交易,是基于统计套利的配对交易策略是一种市场中性策略,具体的说,是指从市场上找出历史股价走势相近的股票进行配对,当配对的股票价格差偏离历史均值时,则做空股价较高的股票同时买进股价较低的股票,等待他们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
接下来开始我们的股价相关度分析,首先我们选两个股票~
感觉全聚德和光明乳业都很好吃的样子,我们就选它们了吧!= ̄ω ̄=
1、导入数据包
简单介绍一下要用到的数据包
matplotlib.pyplot:绘图库,其中pyplot子包提供一个类MATLAB的绘图框架
numpy:科学计算库,支持高级大量的维度数组与矩阵运算
pandas:纳入了大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具
tushare:财经数据接口包
[python] view plain copy
<span style="font-size:18px;">import matplotlib.pyplot as plt </span>
<span style="font-size:18px;">import numpy as np</span>
<span style="font-size:18px;">import pandas as pd</span>
<span style="font-size:18px;">import tushare as ts
</span>
2、根据全聚德和光明乳业的股票代码获取数据,这里获取的是2016年一整年的收盘价,获取完后合并,因为停牌的存在,用前一天的价格去填写缺失数据,最终以CSV格式保存数据
[python] view plain copy
<span style="font-size:18px;">s_qjd = '002186' #全聚德</span>
<span style="font-size:18px;">s_gm = '600597' #光明乳业</span>
<span style="font-size:18px;">sdate = '2016-01-01'#起止日期</span>
<span style="font-size:18px;">edate = '2016-12-31'</span>
<span style="font-size:18px;">df_qjd = ts.get_h_data(s_qjd,
start = sdate, end = edate).sort_index(axis =
0,ascending=True)#获取历史数据</span>
<span
style="font-size:18px;">df_gm = ts.get_h_data(s_gm, start = sdate,
end = edate).sort_index(axis = 0,ascending=True)</span>
<span style="font-size:18px;">df =
pd.concat([df_qjd.close,df_gm.close], axis = 1, keys=['qjd_close',
'gm_close'])#合并</span>
<span style="font-size:18px;">df.ffill(axis=0, inplace=True)#填充缺失数据</span>
<span style="font-size:18px;">df.to_csv('qjd_gm.csv')
</span>
3、用pearson相关系数计算相关度(Pearson相关系数是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。),再打印出来看一眼
[python] view plain copy
<span style="font-size:18px;">corr = df.corr(method = 'pearson', min_periods = 1)#pearson方法计算相关性</span>
<span style="font-size:18px;">print(corr)</span>
算出来有0.81,超过0.8,按值域等级来说属于极强相关,不过话说一个卖烤鸭的为什么会和卖牛奶的相关度那么高。。。。难道大家吃烤鸭的时候都喜欢喝牛奶吗。。。
4、绘制图像出来喵一眼,看看趋势上来说什么时候可以有机会做配对交易
[python] view plain copy
<span style="font-size:18px;">df.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm.jpg')</span>
<span style="font-size:18px;">plt.close()</span>
5、按分析日期的第一天的股价为基准做归一化处理,打印图像
[python] view plain copy
<span style="font-size:18px;">df['qjd_one'] = df.qjd_close / float(df.qjd_close[0])*100</span>
<span style="font-size:18px;">df['gm_one'] = df.gm_close / float(df.gm_close[0])*100</span>
<span style="font-size:18px;">df.qjd_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">df.gm_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm_one.jpg')</span>
<span style="font-size:18px;">
</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03