京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python数据分析:股价相关性
为什么要分析股价相关度呢,我们来引入一个概念——配对交易
所谓的配对交易,是基于统计套利的配对交易策略是一种市场中性策略,具体的说,是指从市场上找出历史股价走势相近的股票进行配对,当配对的股票价格差偏离历史均值时,则做空股价较高的股票同时买进股价较低的股票,等待他们回归到长期均衡关系,由此赚取两股票价格收敛的报酬。
接下来开始我们的股价相关度分析,首先我们选两个股票~

感觉全聚德和光明乳业都很好吃的样子,我们就选它们了吧!= ̄ω ̄=
1、导入数据包
简单介绍一下要用到的数据包
matplotlib.pyplot:绘图库,其中pyplot子包提供一个类MATLAB的绘图框架
numpy:科学计算库,支持高级大量的维度数组与矩阵运算
pandas:纳入了大量库和一些标准的数据模型,提供高效地操作大型数据集所需的工具
tushare:财经数据接口包
[python] view plain copy
<span style="font-size:18px;">import matplotlib.pyplot as plt </span>
<span style="font-size:18px;">import numpy as np</span>
<span style="font-size:18px;">import pandas as pd</span>
<span style="font-size:18px;">import tushare as ts
</span>
2、根据全聚德和光明乳业的股票代码获取数据,这里获取的是2016年一整年的收盘价,获取完后合并,因为停牌的存在,用前一天的价格去填写缺失数据,最终以CSV格式保存数据
[python] view plain copy
<span style="font-size:18px;">s_qjd = '002186' #全聚德</span>
<span style="font-size:18px;">s_gm = '600597' #光明乳业</span>
<span style="font-size:18px;">sdate = '2016-01-01'#起止日期</span>
<span style="font-size:18px;">edate = '2016-12-31'</span>
<span style="font-size:18px;">df_qjd = ts.get_h_data(s_qjd,
start = sdate, end = edate).sort_index(axis =
0,ascending=True)#获取历史数据</span>
<span
style="font-size:18px;">df_gm = ts.get_h_data(s_gm, start = sdate,
end = edate).sort_index(axis = 0,ascending=True)</span>
<span style="font-size:18px;">df =
pd.concat([df_qjd.close,df_gm.close], axis = 1, keys=['qjd_close',
'gm_close'])#合并</span>
<span style="font-size:18px;">df.ffill(axis=0, inplace=True)#填充缺失数据</span>
<span style="font-size:18px;">df.to_csv('qjd_gm.csv')
</span>

3、用pearson相关系数计算相关度(Pearson相关系数是用来衡量两个数据集合是否在一条线上面,它用来衡量定距变量间的线性关系。),再打印出来看一眼
[python] view plain copy
<span style="font-size:18px;">corr = df.corr(method = 'pearson', min_periods = 1)#pearson方法计算相关性</span>
<span style="font-size:18px;">print(corr)</span>

算出来有0.81,超过0.8,按值域等级来说属于极强相关,不过话说一个卖烤鸭的为什么会和卖牛奶的相关度那么高。。。。难道大家吃烤鸭的时候都喜欢喝牛奶吗。。。
4、绘制图像出来喵一眼,看看趋势上来说什么时候可以有机会做配对交易
[python] view plain copy
<span style="font-size:18px;">df.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm.jpg')</span>
<span style="font-size:18px;">plt.close()</span>

5、按分析日期的第一天的股价为基准做归一化处理,打印图像
[python] view plain copy
<span style="font-size:18px;">df['qjd_one'] = df.qjd_close / float(df.qjd_close[0])*100</span>
<span style="font-size:18px;">df['gm_one'] = df.gm_close / float(df.gm_close[0])*100</span>
<span style="font-size:18px;">df.qjd_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">df.gm_one.plot(figsize = (20,12))</span>
<span style="font-size:18px;">plt.savefig('qjd_gm_one.jpg')</span>
<span style="font-size:18px;">
</span>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27