京公网安备 11010802034615号
经营许可证编号:京B2-20210330
主成分分析和因子分析及其在R中的…
主成分分析和探索性因子分析是两种用来探索和简化多变量复杂关系的常用方法,它们之间有联系也有区别。
主成分分析(PCA)是一种数据降维方法,它能将大量相关变量转化为一组很少的不相关变量,这些无关变量称为主成分。例如,使用PCA可将30个相关(很可能冗余)的环境变量转化为5个无关的成分变量,并且尽可能地保留原始数据集的信息。
相对而言,探索性因子分析(EFA)是一系列用来发现一组变量的潜在结构的方法。它通过寻找一组更小的、潜在的或隐藏的结构来解释已观测到的、显式的变量间的关系。
从上图可以看出,主成分(PC1和PC2)是观测变量(X1到X5)的线性组合。形成线性组合的权重都是通过最大化各主成分所解释的方差来获得,同时还要保证个主成分间不相关。相反,因子(F1和F2)被当做是观测变量的结构基础或“原因”,而不是它们的线性组合。代表观测变量方差的误差(e1到e5)无法用因子来解释。图中的圆圈表示因子和误差无法直接观测,但是可通过变量间的相互关系推导得到。在本例中,因子间带曲线的箭头表示它们之间有相关性。在EFA模型中,相关因子是常见的,但并不是必需的。
2 R中的主成分因子分析
R的基础安装包提供了PCA和EFA的函数,分别为princomp()和factanal()。下文将重点介绍psych包中提供的函数,它们提供了比基础函数更丰富和有用的选项。
psych包中有用的因子分析函数
因子分析常见步骤:
(1)数据预处理。两种方法都是根据观测变量间的相关性来推导结果,可以输入原始数据矩阵或相关系数矩阵。
(2)选择因子模型。判断是选择主成分分析(数据降维)还是探索性因子分析(发现潜在结构)。如果选择因子分析方法,还需要选择一种估计因子模型的方法(如最大似然估计)。
(3)判断要选择的主成分/因子数目
(4)选择主成分/因子
(5)旋转主成分/因子
(6)解释结果
3 主成分分析
第一主成分是对原来观测变量的加权组合,对初始变量集的方差解释性最大。第二主成分次之,同时与第一成分正交(不相关)。
1判断主成分个数
判断需要多少个主成分的准则:
A根据先验经验和理论知识判断主成分分数
B根据要解释变量方差的积累值的阈值来判断需要的主成分数
C通过检查变量间k×k的相关系数矩阵来判断保留的主成分数
最常见的是基于特征值的方法。每个主成分都与相关系数矩阵的特征值相关联,第一主成分
与最大的特征值相关联,第二主成分与第二大的特征值相关联,依此类推。
Kaiser-Harris准则建议保留特征值大于1的主成分,特征值小于1的成分所解释的方差比包含在单个变量中的方差更少。
Cattell碎石检验则绘制了特征值与主成分数的图形。这类图形可以清晰地展示图形弯曲状况,
在图形变化最大处之上的主成分都可保留。
最后,也可以进行模拟,依据与初始矩阵相同大小的随机数据矩阵来判断要提取的特征值。若基于真实数据的某个特征值大于一组随机数据矩阵相应的平均特征值,那么该主成分可以保留。该方法称作平行分析。
利用fa.parallel()函数,你可以同时对三种特征值判别准则进行评价。
格式:fa.parallel(data, fa=”PC”, n.iter=100,show.legend=FALSE, main=””)
2提取主成分
principal()函数可以根据原始数据矩阵或者相关系数矩阵做主成分分析。
格式为:principal(r,nfactors=,rotate=,scores=)
其中:r是相关系数矩阵或原始数据矩阵;
nfactors设定主成分数(默认为1);
rotate指定旋转的方法(默认最大方差旋转(varimax));
scores设定是否需要计算主成分得分(默认不需要)。
输出结果解释:
PC1、PC2栏包含了成分载荷,指观测变量与主成分的相关系数。
h2栏指成分因子方差——主成分对每个变量的方差解释度。
u2栏指成分唯一性——方差无法被主成分解释的比例(1-h2)。
SS loadings行包含了与主成分相关联的特征值,指与特定主成分相关联的标准化后的方差值。
Proportion Var行表示的是每个主成分对整个数据集的解释程度。
3主成分旋转
旋转是一系列将成分载荷阵变得更容易解释的数学方法,它们尽可能地对成分去噪。旋转方法有两种:使选择的成分保持不相关(正交旋转),和让它们变得相关(斜交旋转)。最流行的正交旋转是方差极大旋转,它试图对载荷阵的列进行去噪,使得每个成分只是由一组有限的变量来解释(即载荷阵每列只有少数几个很大的载荷,其他都是很小的载荷)。
以方差极大旋转为例,旋转后,主成分仍不相关,对变量的解释性不变,累计方差解释性也没有变化,变的只是各个主成分对方差的解释度(即线性系数)。
4获取主成分得分
Principal函数中score=TRUE时,即返回每个对象在主成分上的得分。当输入数据是相关系数矩阵时,则不可能获取每个观测的主成分得分,但可以得到用来计算主成分得分的系数。
4 探索性因子分析
EFA的目标是通过发掘隐藏在数据下的一组较少的、更为基本的无法观测的变量,来解释一组可观测变量的相关性。这些虚拟的、无法观测的变量称作因子。(每个因子被认为可解释多个观测变量间共有的方差,因此准确来说,它们应该称作公共因子)。
1判断需提取的公共因子数
同样使用fa.parallel函数,令fa=”both”,因子图形将会同时展示主成分和公共因子分析的结果。
对于EFA,Kaiser-Harris准则的特征值数大于0,而不是1
2提取公共因子
fa(r,nafctors=,n.obs=,rotate=,scores=,fm=)
其中:r是相关系数矩阵或者原始数据矩阵;
nfactors设定提取的因子数(默认为1);
n.obs是观测数(输入相关系数矩阵时需要填写);
rotate设定旋转的方法(默认互变异数最小法);
scores设定是否计算因子得分(默认不计算);
fm设定因子化方法(默认极小残差法)。
与PCA不同,提取公共因子的方法很多,包括最大似然法(ml)、主轴迭代法(pa)、加权
最小二乘法(wls)、广义加权最小二乘法(gls)和最小残差法(minres)。统计学家青睐使用最大似然法,因为它有良好的统计性质。不过有时候最大似然法不会收敛,此时使用主轴迭代法效果会很好。
3因子旋转
使用正交旋转将人为地强制两个因子不相关。使用斜交转轴法,则允许两个因子相关。
对于正交旋转,因子分析的重点在于因子结构矩阵(变量与因子的相关系数),而对于斜交旋转,因子分析会考虑三个矩阵:因子结构矩阵、因子模式矩阵和因子关联矩阵。
因子模式矩阵即标准化的回归系数矩阵。它列出了因子预测变量的权重。PA1,PA2…
因子关联矩阵即因子相关系数矩阵。
因子结构矩阵(或称因子载荷阵)在输出结果上没显示出来。
4因子得分
因子分析不怎么关注因子得分
5其他与EFA相关的包
FactoMineR包不仅提供了PCA和EFA方法,还包含潜变量模型。
FaiR包用遗传算法来估计因子分析模型。
GPArotation包则提供了许多因子旋转方法。
nFactors包提供了用来判断因子数目的许多复杂方法
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15