
基于R统计分析—探索性数据分析
数据的统计分析分为描述性统计分析和统计推断两部分, 前者又称为探索性统计分析, 它是通过绘制统计图形、编制统计表格、计算统计量等方法来探索数据的主要分布特征, 揭示其中存在的规律. 探索性数据分析是进行后期统计推断的基础.
本文着重于数据集的数字化探索。程序包DAAG中有内嵌数据集“possum”,它包括了从维多利亚南部到皇后区的七个地区的104只负鼠(possum)的年龄、尾巴的长度、总长度等14个特征值,选用这套数据集进行分析。
备注:对于每一变量,给出了样本总个数(n),缺失样本数(missing)、水平个数(unique),并列出每一水平的取值、频数和频率。这里需要说明的是,对于case变量,输出结果给出了频率最低和最高的5个水平值,在数据分布有偏情况下,这些水平值很有可能成为异常值。
备注:输出结果包括前面给出的样本数(nobs),缺失值(NAs),最小值最大值,同时也有特有的指标,变量取值之和(Sum),标准误差均值(SE Mean)、95%的置信水平上下限、方差、标准误差,以及两个分布指标偏度和峰度。
备注:偏度用来衡量数据的堆成程度,以正太分布为基准。当服从正太分布时,偏度为0;当介于[-1,1]之间时,说明数据分布的对称性较强;当绝对值大于1时,则认为数据存在显著偏倚,为正时有右偏的趋势,反之左偏。
峰度用来衡量数据分布形态的陡缓程度,以正太分布为基准。当值为0时,说明与正太分布相同,即标准峰度;当峰度大于0时,则表示该数据分布与正太分布相比较为陡峭,为尖顶峰度;当峰度小于0时,则表示该数据分布与正太分布相比较为平坦,为平顶峰度。
备注:最左边一列:101表示无缺失值样本总数,2表示age缺失2个样本,1表示footlgth缺失1个样本;最下边一行对应每个属性缺失的样本个数,其中最后一个3表示总缺失值个数;最右边一列表示对应行几个变量发生缺失的情况。
#相关性
cor(possum$case,possum$site)
var=c(5:9)
cor_matrix=cor(possum[var],use="pairwise") #对5个变量两两计算相关系数
library(ellipse)#可视化相关图
plotcorr(cor_matrix,col=rep(c("white","black"),5))
备注:圆形的宽窄表示相关性的高低,两变量对应的圆形越窄,表明其相关性越高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15