
基于R统计分析—探索性数据分析
数据的统计分析分为描述性统计分析和统计推断两部分, 前者又称为探索性统计分析, 它是通过绘制统计图形、编制统计表格、计算统计量等方法来探索数据的主要分布特征, 揭示其中存在的规律. 探索性数据分析是进行后期统计推断的基础.
本文着重于数据集的数字化探索。程序包DAAG中有内嵌数据集“possum”,它包括了从维多利亚南部到皇后区的七个地区的104只负鼠(possum)的年龄、尾巴的长度、总长度等14个特征值,选用这套数据集进行分析。
备注:对于每一变量,给出了样本总个数(n),缺失样本数(missing)、水平个数(unique),并列出每一水平的取值、频数和频率。这里需要说明的是,对于case变量,输出结果给出了频率最低和最高的5个水平值,在数据分布有偏情况下,这些水平值很有可能成为异常值。
备注:输出结果包括前面给出的样本数(nobs),缺失值(NAs),最小值最大值,同时也有特有的指标,变量取值之和(Sum),标准误差均值(SE Mean)、95%的置信水平上下限、方差、标准误差,以及两个分布指标偏度和峰度。
备注:偏度用来衡量数据的堆成程度,以正太分布为基准。当服从正太分布时,偏度为0;当介于[-1,1]之间时,说明数据分布的对称性较强;当绝对值大于1时,则认为数据存在显著偏倚,为正时有右偏的趋势,反之左偏。
峰度用来衡量数据分布形态的陡缓程度,以正太分布为基准。当值为0时,说明与正太分布相同,即标准峰度;当峰度大于0时,则表示该数据分布与正太分布相比较为陡峭,为尖顶峰度;当峰度小于0时,则表示该数据分布与正太分布相比较为平坦,为平顶峰度。
备注:最左边一列:101表示无缺失值样本总数,2表示age缺失2个样本,1表示footlgth缺失1个样本;最下边一行对应每个属性缺失的样本个数,其中最后一个3表示总缺失值个数;最右边一列表示对应行几个变量发生缺失的情况。
#相关性
cor(possum$case,possum$site)
var=c(5:9)
cor_matrix=cor(possum[var],use="pairwise") #对5个变量两两计算相关系数
library(ellipse)#可视化相关图
plotcorr(cor_matrix,col=rep(c("white","black"),5))
备注:圆形的宽窄表示相关性的高低,两变量对应的圆形越窄,表明其相关性越高。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05