不同人学习SPSS的正确姿势
根据我的长期观察,学习spss的人群分为如下这么几种:① 课程作业党;② 本科论文党; ③ 硕士论文党;④ 工作储备党; ⑤工作需求党
下面我来分析一下不同人的学习需求,以及学习策略。
【课程作业党】的需求无非是完成老师留的作业,这类任务一般来说比较简单,只考察spss的特定功能,所以只要去上课了,并且上课听了讲,也自己跟着老师或者教材做过练习,课后做作业应该是没有问题的。当然以上说法建立在这个老师有水平的基础上,不适用于那种照本宣科,老师自己本身都不大会用软件的情形。
前面分析了,这类需求一般是针对spss的特定功能,或者特定应用,比如让你做一个方差分析,做一个t检验,或者对一份问卷进行简单分析。我这里给你的解决办法也不是说让你赶紧做完,应付交差,我给的建议是在真正学习到知识的前提下,快速完成任务的做法。在你拿到作业之后,首先看一下,它需要用到哪些知识点,先把相关的知识背景和理论基础梳理一下,比如对于方差分析,你不需要懂得方差分析具体的公式和实现的算法,但是你需要知道方差分析的思想,知道怎么阅读方差分析的结果。因为在spss或者其它的一些统计分析软件中,计算过程不需要我们关心,但是我们应该明白如何阅读输出结果。具备了这种理论基础以后,就可以上网以关键字SPSS方差分析进行搜索,就能够搜索到相应的操作,按照网上教程给出的操作过程操作即可。这样你就快速完成了作业,也大概知道自己做了什么,不至于做完作业还迷迷糊糊的。由于现在大学涉及的知识面比较广,有的人可能并不是很在意对一些技能的掌握,可能只是想完成任务,但是又不想完成的太草率,那我提供的这种思路,是快速解决这类任务的一个办法,读者可自己进行举一反三。
【本科论文党】的需求通常来说,也比较简单,因为本科阶段的论文大多题目比较固定,研究方法和数据处理方法也都是大同小异,经常使用的统计分析方法也无外乎那几种参数和非参数方法。
所以在做本科论文的时候,首先应该弄明白这个项目的实验设计或者项目设计,然后确定数据处理方法,这个过程导师一般会给你讲清楚,然后你再针对性的了解相关方法即可。
【硕士论文党】的需求相对来说比较复杂,不过据我观察,硕士阶段需要使用spss的,多数是需要对问卷和量表进行分析,还有一小部分需要使用到一些高级统计分析和数据挖掘的算法。
这种情况要求对spss要有一个相对全面的掌握,因为这个时候,你应该使用什么方法来进行何种分析,通常不是特别确定,虽然仍然在一定的范围内选择,比如在问卷分析的那些常用方法里面选择用于分析问卷的方法。还有一个挑战就是,社会科学领域的很多问卷分析项目,分析结果很有可能和自己的研究假设不符,这是一个很值得探讨的问题,从分析的技术上讲,通常没有什么好的解决办法。我非常鄙视修改数据来让结果符合假设的做法。硕士论文的研究周期相对比较长,在最终写论文之前,你应该多阅读文献,进行足够的预调查和预研究,这样能在一定程度上避免随随便便就提出一个实验数据无法证明的假设。
【工作储备党】的需求是希望储备一些数据分析技能,以希望未来能够被优秀的雇主录用。
就目前市场需求而言,直接需求spss的公司不是特别多,但是如果熟练掌握spss,并且深入理解spss里面的一些模型,数据挖掘算法的概念和应用,也会很受欢迎,这也会帮助你学习Python等编程类数据分析工具。因为用Python和spss对同一批数据建立逻辑回归或者其它模型,它们的结果是一样的,需要具备的理论知识模型相关的知识也是一样的,不同在于Python能够轻松处理更大的数据集,而spss不能。而在利用spss掌握了模型概念和用法的基础上,学习用Python去实现这个模型其实是一件很容易的事情,在这个过程中,你也会非常的开心,因为你发现你可以处理大数据了。我一直认为对于普通人而言,如果直接通过编程去学习数据挖掘算法,和分析模型是很困难的事情,因为这里面包括了两个难度很高的任务数据挖掘算法和编程,很多人容易中途放弃。但是如果你把学习算法和编程这两个过程分开,先通过一些可视化的软件,比如spss去掌握算法和模型,在此基础上,再去学习编程,这会变得很容易,也会给你带来成就感,激励你不断前进。学习路上,学习路径和学习方法也很重要,这是战略的一种体现。
【工作需求党】的需求是为了解决项目中的某个特定问题,比如使用spss来验证算法,验证模型的可行性,或者做某个领域的调查分析报告。
通常来讲,工作岗位如果有这类需求,企业一般也已经招聘了相应的人才,公司内部可求助于这些同事的帮助来解决。如果因为公司拓展业务,或者开始数据化转型,新加入了分析的需求,需要员工掌握分析技能,因为员工本身对自己已有的业务很熟悉,公司转型或者业务拓展也有一定的过程,员工在公司转型期间或者业务拓展期间,可以集中学习课程,或者请有经验的老师进行培训,可快速增强员工们的spss分析技能,这个时候适当招聘新的会相关技能的人也可以,但是新人由于不熟悉公司业务,完全靠新人不如培训老员工有效。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03