
前面有讲过 SPSS正交试验设计及其方差分析 一篇文章,包含了一个典型的正交试验案例。然而在实际应用当中,主观客观条件复杂多变,在试验设计中就要求能够灵活控制影响因素和水平的个数,以及试验的次数。
正交设计招数虽只有一招,但却变化多端,有多重不同应用方式,无空白列重复正交设计就是其中的一个变式。
一
案例数据
某制药厂主要生产胃蛋白酶,为了提高生产效率,拟从生产工艺上进行优化改进,你被要求负责该项目。根据多年的生产经验,你认为影响生产效率的因素主要包括A水解温度,B水解时间,C加盐量,D烘房温度,根据目前现有的生产条件,这几个因素能调整的参数大概只有三个水平,以残留蛋白作为质量指标,你决定通过正交试验来解决当前的问题。
数据来源:《SPSS13在空白列正交试验设计及其数据处理中的应用》
二
选择正交表
各因素只能调整3个水平,主要有4个因素,因此最先考虑到选用L9(34)的四因素三水平正交表,由于参数水平客观条件的限制,L16(45)正交表可以不用考虑了。
选定L9(34)正交表,遇到一个问题:因素排满,没有空白列用于统计实验误差,怎么呢?所以必须通过重复试验来统计实验误差,你决定每个组合方案重复3次。因此,本实验最终需要27次,将得到27组数据。
三
SPSS正交试验数据录入格式
网上有不少同学提到这个问题,其实数据结果组织形式和无重复试验的格式是一样的,只需要顺次增加行即可。
四
方差分析步骤
菜单操作:
分析→一般线性模型→单变量
因变量:输入残留蛋白
固定因子:输入水解温度,水解时间C加盐量,烘房温度
模型选项卡:以上四个影响因素作为主效应进行分析
方差分析结果:
四个影响因素的sig值均小于0.01,表明四个因素对生产胃蛋白酶都有极显著的影响,验证了最初你的经验。但这还不是我们最终的目的,我们需要得到提高生产效率的最优化工艺组合,直白一点,就是你必须找到每个影响因素最好的那个水平参数。
这个问题在上一篇文章中就有说明,可采用多重比较的方法就行可视化比较。
五
具体做法
多重比较选项卡:将四个具有显著影响的因素依次输入到右侧的“两两比较检验”框中,选择“duncan”法来计算。
单从数据分析的结果来看,最优工艺组合为:A3B3C2D1。值得讨论的问题:水解时间、加盐量两个因素趋势图有些异常,可能和其他两个因素存在交互作用,留给大家讨论。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08