
真实和完备是大数据分析的基础
随着大数据时代的到来,网络数据的真实性问题日益受到关注。相较以抽样调查为主的小数据时代,在大数据时代,如何进行正确的数据清洗和数据分析,以便从海量信息源中获取真实而有价值的信息内容,并生成指向性清晰的决策指导,成为哲学社会科学界和自然科学界共同面临的课题。
数据来源:确保具备大数据品质
在中国人民大学新闻学院教授喻国明看来,高品质数据来源是确保大数据分析真实、可靠的首要条件。“根据国内外的相关技术发展情况分析,当前比较权威、可靠的大数据来源主要有两个,一是掌握多方面的社会运行数据的政府部门,二是在某一领域拥有数据采集能力的大型公司,如数字移动、网购、社交媒体、搜索引擎、输入法软件等公司。”
喻国明认为,大数据时代的一个重要特点,就是全方位、立体式的数据分析成为可能。“不过,单个部门或企业所掌握的大数据往往类别单一,对其的分析结论难免陷于零散、维度单一。”另外,从严格意义上讲,大数据不是政府、企业的“私有财产”,它与社会个体的权利和隐私密切相关,应当属于全社会。
那么,目前民间进行的大数据分析“靠谱”吗?上海交通大学舆情研究实验室主任谢耕耘介绍,如果对大数据来源进行分类,可以分为政府、大企业的定点监测,以及民间依靠软件等技术手段的数据挖掘。对此,喻国明这样评价:相对于政府部门与大型网络企业的大数据采集能力,仅仅从信息海洋中简单挖掘、捞取的部分所谓的“大数据”,远远不具备真正的大数据品质。
北京邮电大学互联网治理与法律研究中心主任李欲晓更愿意将大数据分析结果看作一种数据产品。“衡量其价值,关键在于它是否面向特定客户群提供了所需数据产品类型。”目前,社会各界已经意识到大数据时代的到来,许多机构和个人也在积极开发相关软件和产品,这个过程的最大价值,便是提升了全社会的大数据处理能力。
数据分类:建立更多有效标签
谢耕耘认为,通过搜索引擎的分析软件进行数据挖掘,是当前许多民间研究机构获取所谓“大数据”的主要途径。目前,付之应用的诸如“爬虫”等大数据挖掘软件,其作用是非常有限的——往往在只挖掘到几千条数据时,就被相关网络平台为防止机器人挖掘而设置的障碍所拦截,并被要求反复输入验证码。“因此,这种依靠软件来执行的数据挖掘方式,往往需要数十台、上百台服务器,以及高容量的带宽和大量的IP地址。”其挖掘所获得的大数据,通常是局部的、不完整的,难以推断整体状况。
从这个意义上看,尽管目前从事大数据分析的人力、机构很多,但真正做出可信服的研究成果的团队并不多。在李欲晓看来,当前的大数据分析尚未成熟,仍处于“成长期”。
喻国明认为,大数据由不同数据集构成,若想全面、立体式反映某一个体、事物、事件,其关键在于对不同数据集进行关联分析,而关联分析的前提是建立标签。“对每一个数据文本做标签,就像图书分类一样。几十万册的图书,有了分类,才能够有序管理。面对大数据的海量信息,有了标签,就可以轻松找出需要的信息。”尽管不可能存在一个100%包容性的大数据库,但对数据进行快速、有效的处理与整合,无疑能为未来深入、真实、可靠的分析夯实基础。
“有些标签是自然形成的。例如,通过社交媒体的个人资料,就可以轻松分出年龄、性别、职业等不同标签。还有一些标签,则要通过网络行为分析才能认定。例如,在分析个人言论的社会特征时,可根据网络发言使用的词频、语义进行计算,并依此为网民贴上早起群体、晚睡群体,时尚型消费者、保守型消费者,高收入者、低收入者等标签。”喻国明认为,在大数据时代,一个文本碎片被打上的有效标签越多,其可被利用的价值越大。
数据分析:以小数据为“校准”
中国社会科学院新闻与传播研究所研究员姜飞做了一个有趣的比喻,“在大数据时代,数据信息好比货币,要像研究货币一样研究信息数据。”在他看来,“信息货币”一旦不可信,也容易发生“金融危机”;要提高大数据分析的可信度,就要找到一个“校对的准绳”。
喻国明认为,传统的抽样调查在发布结论时,需同时公布调查是否遵守了“21条规则”(包括数据来源、调查方法、资助者等),以保证调查报告不会产生误导。未来,大数据分析也应该同步公布数据来源、数据量、数据截取的时间区间等有关数据品质的指标。“如果数据来源是通过‘爬取’软件获取,那么公布‘爬取’量有多大,可以在一定程度上帮助受众判断数据分析的真实度、可信度。”
另外,尽管小数据是小范围的、片段的,但它有一个核心价值,即能够提供准确的结构性分析,拥有可靠的统计学价值。喻国明表示,“大数据虽然信息丰满,但整体构造难以看清,因此,小数据能够成为大数据判断结构性位置的校标。”
李欲晓还表示,大数据时代来势迅猛,关涉企业社会责任、个人社会规范等方面的法律法规正在完善。未来,在数据来源、数据分析、结论校准等方面,应陆续出台相关的法律法规和学术规范,以保障大数据在国家治理中发挥更大作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18