京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python装饰器实现几类验证功能做法实例
最近新需求来了,要给系统增加几个资源权限。尽量减少代码的改动和程序的复杂程度。所以还是使用装饰器比较科学
之前用了一些登录验证的现成装饰器模块。然后仿写一些用户管理部分的权限装饰器。
比如下面这种
def permission_required(permission):
def decorator(f):
@wraps(f)
def decorated_function(*args, **kwargs):
if not current_user.can(permission):
abort(403)
return f(*args, **kwargs)
return decorated_function
return decorator
def admin_required(f):
return permission_required(Permission.SMY)(f)
调用权限的时候很好理解。直接仿写admin_required的格式就好了。然后每个页面入口用语法糖这样写: @admin_required
于是页面的入口权限就做好了。但是资源权限和页面权限不同。上面内容中提到的permission是写在model.py的静态内容里面的。
从封装来看,至少是看不出来哪个地方暴露了用户查询的方法(菜鸟水平下)。只能简单的看出来if判断的时候似乎使用了current_user这个变量的内置方法
但是current_user其实是一个第三方的包的内容,和登录模块引入的包相同,是一整套记录token信息的代码。详细内容太多。从这个地方出发去写,会go die
因为哪怕我知道其实调用的.can(permission)是model类里面定义的类方法。可是current_user是取了哪个部分的东西还是不清楚。
所以不管它。从头来梳理一下装饰器的内容。
首先一个简单的装饰器写法是很好理解的。比如原函数是这样写的:
def page():
if user == 'admin':
form = Form()
if request.method=='POST':
db.session.add(form)
db.session.commit()
flash("success")
return 0
这当然是随便写的一个函数(明显有很多问题),只是用来表达一个过程。首先通过路由调用这个函数的时候,会先执行第一个if判断。这个判断即我们想要的验证内容
验证通过以后,说明用户可以访问这个页面,然后页面内容会渲染出来,交互功能也被允许……
那么装饰器,就是把这个if的功能提取出来了。那么原函数写成这样的形式:
@admin_check
def page():
form = Form()
if request.method=='POST':
db.session.add(form)
db.session.commit()
flash("success")
return 0
单从这个函数来说,这样写并没有任何好处,似乎本来一行代码搞定的问题,多用了几行代码。我们展开这个形式的完整代码看一下:
def admincheck(func):
if user=='admin':
return func
def page():
form = Form()
if request.method=='POST':
db.session.add(form)
db.session.commit()
flash("success")
return 0
page = admincheck(page())
上面的装饰器只是把page=admincheck这一句写成了@模式。
但是这种写法只能解决最基本的验证问题。也就是相对独立的入口验证。这个验证还没有拿到程序传递到page()函数当中的参数。也就是说,这个验证这么看起来没什么用处
不过机制是这样。接下来就可以研究怎样的做法是把路由传递过来的请求数据进行验证然后继续执行的了。
def admincheck(func):
def inner(arg):
if user == 'admin':
if arg == 'false':
abort(403)
return func(arg)
return inner
同样的,多个参数的时候,只需要把 def inner(arg)改写成def inner(arg1,arg2)
n个参数的时候,则写成def inner(*args,**kwargs) 这个需要注意一下。*args是元组,即('user',1);**kwargs是字典,即{'user':1}
同时写这两个形参的话,基本上就能处理所有传递进来的参数类型了。
当然。除此以外还有更复杂的装饰器写法。不过能处理传递过来的参数并且不影响被装饰函数的正常执行。基本上实现了之前的功能。
那么回过头来看示例当中的写法。最外层使用def permission_required(permission): 的意义,显然是想要实现复用。
def admin_required(f):
return permission_required(Permission.SMY)(f)
上面的(permission)形参显然对应permission_required(Permission.SMY)中(Permission.SMY)这个参数。把这个参数的形参传递到方法体内部
这也是为什么要在装饰器decorator(f)外面再嵌套一层函数的原因——实现复用
于是之前这个写法的内容就很清晰了
def permission_required(permission):
#通过形参实现了一个装饰器类。对于不同针对性的装饰器,都可以调用这个函数的实现,而只需要做最小的改动(传递形参)
def decorator(f):
#这个才是装饰器开始执行的第一步
@wraps(f)
#这个装饰器实际上是为了保证函数的原始属性不发生改变。所谓原始属性,指的是__name__ 这种属性
def decorated_function(*args, **kwargs):
#这个装饰器方法把原函数的形参继承了。因此实际上相当于在原函数开头增加了这个函数的内容
if not current_user.can(permission):
#这个地方很明显。current_user是从内存中取(服务端),然后permission就会根据我们实际需要验证的permission进行形参到实参的转化
abort(403)
#明显的异常处理,当然,403是一个粗暴的方法。更粗暴的方法,我会用redirect(url_for(logout))...
return f(*args, **kwargs)
#结束判断,把参数传递给原函数(此处的f()即是原函数(更具体的权限验证装饰器),只是f是个丑陋的形参而已)
return decorated_function
return decorator
这样差不多就结束了。如果有人想补充,欢迎留言。
以上这篇Python装饰器实现几类验证功能做法实例就是小编分享给大家的全部内容了
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01